Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml5N Unicode version

Theorem cdleml5N 30336
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b  |-  B  =  ( Base `  K
)
cdleml1.h  |-  H  =  ( LHyp `  K
)
cdleml1.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdleml1.r  |-  R  =  ( ( trL `  K
) `  W )
cdleml1.e  |-  E  =  ( ( TEndo `  K
) `  W )
cdleml3.o  |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
cdleml5N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  U  =/=  .0.  )  ->  E. s  e.  E  ( s  o.  U )  =  V )
Distinct variable groups:    E, s    K, s    R, s    T, s    U, s    V, s    W, s, g    B, g, s   
g, H, s    g, K    .0. , s    T, g    g, W
Allowed substitution hints:    R( g)    U( g)    E( g)    V( g)    .0. ( g)

Proof of Theorem cdleml5N
StepHypRef Expression
1 simpl1 963 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  U  =/=  .0.  )  /\  V  =  .0.  )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 cdleml1.b . . . . 5  |-  B  =  ( Base `  K
)
3 cdleml1.h . . . . 5  |-  H  =  ( LHyp `  K
)
4 cdleml1.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
5 cdleml1.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
6 cdleml3.o . . . . 5  |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B ) )
72, 3, 4, 5, 6tendo0cl 30146 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .0.  e.  E )
81, 7syl 17 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  U  =/=  .0.  )  /\  V  =  .0.  )  ->  .0.  e.  E )
9 simpl2l 1013 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  U  =/=  .0.  )  /\  V  =  .0.  )  ->  U  e.  E )
102, 3, 4, 5, 6tendo0mul 30182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  (  .0.  o.  U )  =  .0.  )
111, 9, 10syl2anc 645 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  U  =/=  .0.  )  /\  V  =  .0.  )  ->  (  .0.  o.  U )  =  .0.  )
12 simpr 449 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  U  =/=  .0.  )  /\  V  =  .0.  )  ->  V  =  .0.  )
1311, 12eqtr4d 2293 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  U  =/=  .0.  )  /\  V  =  .0.  )  ->  (  .0.  o.  U )  =  V )
14 coeq1 4829 . . . . 5  |-  ( s  =  .0.  ->  (
s  o.  U )  =  (  .0.  o.  U ) )
1514eqeq1d 2266 . . . 4  |-  ( s  =  .0.  ->  (
( s  o.  U
)  =  V  <->  (  .0.  o.  U )  =  V ) )
1615rcla4ev 2859 . . 3  |-  ( (  .0.  e.  E  /\  (  .0.  o.  U )  =  V )  ->  E. s  e.  E  ( s  o.  U
)  =  V )
178, 13, 16syl2anc 645 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  U  =/=  .0.  )  /\  V  =  .0.  )  ->  E. s  e.  E  ( s  o.  U )  =  V )
18 simpl1 963 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  U  =/=  .0.  )  /\  V  =/=  .0.  )  ->  ( K  e.  HL  /\  W  e.  H ) )
19 simpl2 964 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  U  =/=  .0.  )  /\  V  =/=  .0.  )  ->  ( U  e.  E  /\  V  e.  E ) )
20 simpl3 965 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  U  =/=  .0.  )  /\  V  =/=  .0.  )  ->  U  =/=  .0.  )
21 simpr 449 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  U  =/=  .0.  )  /\  V  =/=  .0.  )  ->  V  =/=  .0.  )
22 cdleml1.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
232, 3, 4, 22, 5, 6cdleml4N 30335 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  ) )  ->  E. s  e.  E  ( s  o.  U
)  =  V )
2418, 19, 20, 21, 23syl112anc 1191 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  U  =/=  .0.  )  /\  V  =/=  .0.  )  ->  E. s  e.  E  ( s  o.  U
)  =  V )
2517, 24pm2.61dane 2499 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  U  =/=  .0.  )  ->  E. s  e.  E  ( s  o.  U )  =  V )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   E.wrex 2519    e. cmpt 4051    _I cid 4276    |` cres 4663    o. ccom 4665   ` cfv 4673   Basecbs 13110   HLchlt 28707   LHypclh 29340   LTrncltrn 29457   trLctrl 29514   TEndoctendo 30108
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-map 6742  df-poset 14042  df-plt 14054  df-lub 14070  df-glb 14071  df-join 14072  df-meet 14073  df-p0 14107  df-p1 14108  df-lat 14114  df-clat 14176  df-oposet 28533  df-ol 28535  df-oml 28536  df-covers 28623  df-ats 28624  df-atl 28655  df-cvlat 28679  df-hlat 28708  df-llines 28854  df-lplanes 28855  df-lvols 28856  df-lines 28857  df-psubsp 28859  df-pmap 28860  df-padd 29152  df-lhyp 29344  df-laut 29345  df-ldil 29460  df-ltrn 29461  df-trl 29515  df-tendo 30111
  Copyright terms: Public domain W3C validator