Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml7 Unicode version

Theorem cdleml7 29930
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
Hypotheses
Ref Expression
cdleml6.b  |-  B  =  ( Base `  K
)
cdleml6.j  |-  .\/  =  ( join `  K )
cdleml6.m  |-  ./\  =  ( meet `  K )
cdleml6.h  |-  H  =  ( LHyp `  K
)
cdleml6.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdleml6.r  |-  R  =  ( ( trL `  K
) `  W )
cdleml6.p  |-  Q  =  ( ( oc `  K ) `  W
)
cdleml6.z  |-  Z  =  ( ( Q  .\/  ( R `  b ) )  ./\  ( (
h `  Q )  .\/  ( R `  (
b  o.  `' ( s `  h ) ) ) ) )
cdleml6.y  |-  Y  =  ( ( Q  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
cdleml6.x  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  ( s `  h ) )  /\  ( R `  b )  =/=  ( R `  g ) )  -> 
( z `  Q
)  =  Y ) )
cdleml6.u  |-  U  =  ( g  e.  T  |->  if ( ( s `
 h )  =  h ,  g ,  X ) )
cdleml6.e  |-  E  =  ( ( TEndo `  K
) `  W )
cdleml6.o  |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
cdleml7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  (
( U  o.  s
) `  h )  =  ( (  _I  |`  T ) `  h
) )
Distinct variable groups:    g, b,
z,  ./\    .\/ , b, g, z    B, b, f, g, z   
h, b, g, z   
s, b, g, z    H, b, g, z    K, b, g, z    Q, b, g, z    R, b, g, z    T, b, f, g, z    W, b, g, z    z, Y   
g, Z
Allowed substitution hints:    B( h, s)    Q( f, h, s)    R( f, h, s)    T( h, s)    U( z, f, g, h, s, b)    E( z, f, g, h, s, b)    H( f, h, s)    .\/ ( f, h, s)    K( f, h, s)    ./\ ( f, h, s)    W( f, h, s)    X( z, f, g, h, s, b)    Y( f, g, h, s, b)    .0. ( z, f, g, h, s, b)    Z( z, f, h, s, b)

Proof of Theorem cdleml7
StepHypRef Expression
1 cdleml6.b . . . 4  |-  B  =  ( Base `  K
)
2 cdleml6.j . . . 4  |-  .\/  =  ( join `  K )
3 cdleml6.m . . . 4  |-  ./\  =  ( meet `  K )
4 cdleml6.h . . . 4  |-  H  =  ( LHyp `  K
)
5 cdleml6.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
6 cdleml6.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
7 cdleml6.p . . . 4  |-  Q  =  ( ( oc `  K ) `  W
)
8 cdleml6.z . . . 4  |-  Z  =  ( ( Q  .\/  ( R `  b ) )  ./\  ( (
h `  Q )  .\/  ( R `  (
b  o.  `' ( s `  h ) ) ) ) )
9 cdleml6.y . . . 4  |-  Y  =  ( ( Q  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
10 cdleml6.x . . . 4  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  ( s `  h ) )  /\  ( R `  b )  =/=  ( R `  g ) )  -> 
( z `  Q
)  =  Y ) )
11 cdleml6.u . . . 4  |-  U  =  ( g  e.  T  |->  if ( ( s `
 h )  =  h ,  g ,  X ) )
12 cdleml6.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
13 cdleml6.o . . . 4  |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B ) )
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13cdleml6 29929 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  ( U  e.  E  /\  ( U `  ( s `
 h ) )  =  h ) )
1514simprd 451 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  ( U `  ( s `  h ) )  =  h )
16 simp1 960 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
1714simpld 447 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  U  e.  E )
18 simp3l 988 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  s  e.  E )
19 simp2 961 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  h  e.  T )
204, 5, 12tendocoval 29714 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  s  e.  E )  /\  h  e.  T )  ->  (
( U  o.  s
) `  h )  =  ( U `  ( s `  h
) ) )
2116, 17, 18, 19, 20syl121anc 1192 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  (
( U  o.  s
) `  h )  =  ( U `  ( s `  h
) ) )
22 fvresi 5563 . . 3  |-  ( h  e.  T  ->  (
(  _I  |`  T ) `
 h )  =  h )
23223ad2ant2 982 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  (
(  _I  |`  T ) `
 h )  =  h )
2415, 21, 233eqtr4d 2295 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  (
( U  o.  s
) `  h )  =  ( (  _I  |`  T ) `  h
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   ifcif 3470    e. cmpt 3974    _I cid 4197   `'ccnv 4579    |` cres 4582    o. ccom 4584   ` cfv 4592  (class class class)co 5710   iota_crio 6181   Basecbs 13022   occoc 13090   joincjn 13922   meetcmee 13923   HLchlt 28299   LHypclh 28932   LTrncltrn 29049   trLctrl 29106   TEndoctendo 29700
This theorem is referenced by:  cdleml8  29931
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-map 6660  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28125  df-ol 28127  df-oml 28128  df-covers 28215  df-ats 28216  df-atl 28247  df-cvlat 28271  df-hlat 28300  df-llines 28446  df-lplanes 28447  df-lvols 28448  df-lines 28449  df-psubsp 28451  df-pmap 28452  df-padd 28744  df-lhyp 28936  df-laut 28937  df-ldil 29052  df-ltrn 29053  df-trl 29107  df-tendo 29703
  Copyright terms: Public domain W3C validator