Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml8 Unicode version

Theorem cdleml8 30422
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
Hypotheses
Ref Expression
cdleml6.b  |-  B  =  ( Base `  K
)
cdleml6.j  |-  .\/  =  ( join `  K )
cdleml6.m  |-  ./\  =  ( meet `  K )
cdleml6.h  |-  H  =  ( LHyp `  K
)
cdleml6.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdleml6.r  |-  R  =  ( ( trL `  K
) `  W )
cdleml6.p  |-  Q  =  ( ( oc `  K ) `  W
)
cdleml6.z  |-  Z  =  ( ( Q  .\/  ( R `  b ) )  ./\  ( (
h `  Q )  .\/  ( R `  (
b  o.  `' ( s `  h ) ) ) ) )
cdleml6.y  |-  Y  =  ( ( Q  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
cdleml6.x  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  ( s `  h ) )  /\  ( R `  b )  =/=  ( R `  g ) )  -> 
( z `  Q
)  =  Y ) )
cdleml6.u  |-  U  =  ( g  e.  T  |->  if ( ( s `
 h )  =  h ,  g ,  X ) )
cdleml6.e  |-  E  =  ( ( TEndo `  K
) `  W )
cdleml6.o  |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
cdleml8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
( U  o.  s
)  =  (  _I  |`  T ) )
Distinct variable groups:    g, b,
z,  ./\    .\/ , b, g, z    B, b, f, g, z   
h, b, g, z   
s, b, g, z    H, b, g, z    K, b, g, z    Q, b, g, z    R, b, g, z    T, b, f, g, z    W, b, g, z    z, Y   
g, Z
Allowed substitution hints:    B( h, s)    Q( f, h, s)    R( f, h, s)    T( h, s)    U( z, f, g, h, s, b)    E( z, f, g, h, s, b)    H( f, h, s)    .\/ ( f, h, s)    K( f, h, s)    ./\ ( f, h, s)    W( f, h, s)    X( z, f, g, h, s, b)    Y( f, g, h, s, b)    .0. ( z, f, g, h, s, b)    Z( z, f, h, s, b)

Proof of Theorem cdleml8
StepHypRef Expression
1 simp1 960 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 cdleml6.b . . . . . 6  |-  B  =  ( Base `  K
)
3 cdleml6.j . . . . . 6  |-  .\/  =  ( join `  K )
4 cdleml6.m . . . . . 6  |-  ./\  =  ( meet `  K )
5 cdleml6.h . . . . . 6  |-  H  =  ( LHyp `  K
)
6 cdleml6.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
7 cdleml6.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
8 cdleml6.p . . . . . 6  |-  Q  =  ( ( oc `  K ) `  W
)
9 cdleml6.z . . . . . 6  |-  Z  =  ( ( Q  .\/  ( R `  b ) )  ./\  ( (
h `  Q )  .\/  ( R `  (
b  o.  `' ( s `  h ) ) ) ) )
10 cdleml6.y . . . . . 6  |-  Y  =  ( ( Q  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
11 cdleml6.x . . . . . 6  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  ( s `  h ) )  /\  ( R `  b )  =/=  ( R `  g ) )  -> 
( z `  Q
)  =  Y ) )
12 cdleml6.u . . . . . 6  |-  U  =  ( g  e.  T  |->  if ( ( s `
 h )  =  h ,  g ,  X ) )
13 cdleml6.e . . . . . 6  |-  E  =  ( ( TEndo `  K
) `  W )
14 cdleml6.o . . . . . 6  |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B ) )
152, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cdleml6 30420 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  ( U  e.  E  /\  ( U `  ( s `
 h ) )  =  h ) )
16153adant2r 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
( U  e.  E  /\  ( U `  (
s `  h )
)  =  h ) )
1716simpld 447 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  U  e.  E )
18 simp3l 988 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
s  e.  E )
195, 13tendococl 30211 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  s  e.  E
)  ->  ( U  o.  s )  e.  E
)
201, 17, 18, 19syl3anc 1187 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
( U  o.  s
)  e.  E )
215, 6, 13tendoidcl 30208 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  E )
22213ad2ant1 981 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
(  _I  |`  T )  e.  E )
232, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cdleml7 30421 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  (
( U  o.  s
) `  h )  =  ( (  _I  |`  T ) `  h
) )
24233adant2r 1182 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
( ( U  o.  s ) `  h
)  =  ( (  _I  |`  T ) `  h ) )
25 simp2 961 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
( h  e.  T  /\  h  =/=  (  _I  |`  B ) ) )
262, 5, 6, 13tendocan 30263 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( U  o.  s )  e.  E  /\  (  _I  |`  T )  e.  E  /\  ( ( U  o.  s ) `  h
)  =  ( (  _I  |`  T ) `  h ) )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) ) )  ->  ( U  o.  s )  =  (  _I  |`  T )
)
271, 20, 22, 24, 25, 26syl131anc 1200 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
( U  o.  s
)  =  (  _I  |`  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   ifcif 3539    e. cmpt 4051    _I cid 4276   `'ccnv 4660    |` cres 4663    o. ccom 4665   ` cfv 4673  (class class class)co 5792   iota_crio 6263   Basecbs 13111   occoc 13179   joincjn 14041   meetcmee 14042   HLchlt 28790   LHypclh 29423   LTrncltrn 29540   trLctrl 29597   TEndoctendo 30191
This theorem is referenced by:  cdleml9  30423  erngdvlem4  30430  erngdvlem4-rN  30438
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-map 6742  df-poset 14043  df-plt 14055  df-lub 14071  df-glb 14072  df-join 14073  df-meet 14074  df-p0 14108  df-p1 14109  df-lat 14115  df-clat 14177  df-oposet 28616  df-ol 28618  df-oml 28619  df-covers 28706  df-ats 28707  df-atl 28738  df-cvlat 28762  df-hlat 28791  df-llines 28937  df-lplanes 28938  df-lvols 28939  df-lines 28940  df-psubsp 28942  df-pmap 28943  df-padd 29235  df-lhyp 29427  df-laut 29428  df-ldil 29543  df-ltrn 29544  df-trl 29598  df-tendo 30194
  Copyright terms: Public domain W3C validator