Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml9 Unicode version

Theorem cdleml9 30441
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
Hypotheses
Ref Expression
cdleml6.b  |-  B  =  ( Base `  K
)
cdleml6.j  |-  .\/  =  ( join `  K )
cdleml6.m  |-  ./\  =  ( meet `  K )
cdleml6.h  |-  H  =  ( LHyp `  K
)
cdleml6.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdleml6.r  |-  R  =  ( ( trL `  K
) `  W )
cdleml6.p  |-  Q  =  ( ( oc `  K ) `  W
)
cdleml6.z  |-  Z  =  ( ( Q  .\/  ( R `  b ) )  ./\  ( (
h `  Q )  .\/  ( R `  (
b  o.  `' ( s `  h ) ) ) ) )
cdleml6.y  |-  Y  =  ( ( Q  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
cdleml6.x  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  ( s `  h ) )  /\  ( R `  b )  =/=  ( R `  g ) )  -> 
( z `  Q
)  =  Y ) )
cdleml6.u  |-  U  =  ( g  e.  T  |->  if ( ( s `
 h )  =  h ,  g ,  X ) )
cdleml6.e  |-  E  =  ( ( TEndo `  K
) `  W )
cdleml6.o  |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
cdleml9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  U  =/=  .0.  )
Distinct variable groups:    g, b,
z,  ./\    .\/ , b, g, z    B, b, f, g, z   
h, b, g, z   
s, b, g, z    H, b, g, z    K, b, g, z    Q, b, g, z    R, b, g, z    T, b, f, g, z    W, b, g, z    z, Y   
g, Z
Allowed substitution hints:    B( h, s)    Q( f, h, s)    R( f, h, s)    T( h, s)    U( z, f, g, h, s, b)    E( z, f, g, h, s, b)    H( f, h, s)    .\/ ( f, h, s)    K( f, h, s)    ./\ ( f, h, s)    W( f, h, s)    X( z, f, g, h, s, b)    Y( f, g, h, s, b)    .0. ( z, f, g, h, s, b)    Z( z, f, h, s, b)

Proof of Theorem cdleml9
StepHypRef Expression
1 cdleml6.b . . . 4  |-  B  =  ( Base `  K
)
2 cdleml6.h . . . 4  |-  H  =  ( LHyp `  K
)
3 cdleml6.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
4 cdleml6.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
5 cdleml6.o . . . 4  |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B ) )
61, 2, 3, 4, 5tendo1ne0 30285 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  =/=  .0.  )
763ad2ant1 978 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
(  _I  |`  T )  =/=  .0.  )
8 cdleml6.j . . . . . . 7  |-  .\/  =  ( join `  K )
9 cdleml6.m . . . . . . 7  |-  ./\  =  ( meet `  K )
10 cdleml6.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
11 cdleml6.p . . . . . . 7  |-  Q  =  ( ( oc `  K ) `  W
)
12 cdleml6.z . . . . . . 7  |-  Z  =  ( ( Q  .\/  ( R `  b ) )  ./\  ( (
h `  Q )  .\/  ( R `  (
b  o.  `' ( s `  h ) ) ) ) )
13 cdleml6.y . . . . . . 7  |-  Y  =  ( ( Q  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
14 cdleml6.x . . . . . . 7  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  ( s `  h ) )  /\  ( R `  b )  =/=  ( R `  g ) )  -> 
( z `  Q
)  =  Y ) )
15 cdleml6.u . . . . . . 7  |-  U  =  ( g  e.  T  |->  if ( ( s `
 h )  =  h ,  g ,  X ) )
161, 8, 9, 2, 3, 10, 11, 12, 13, 14, 15, 4, 5cdleml8 30440 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
( U  o.  s
)  =  (  _I  |`  T ) )
1716adantr 453 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  /\  U  =  .0.  )  ->  ( U  o.  s
)  =  (  _I  |`  T ) )
18 coeq1 4841 . . . . . 6  |-  ( U  =  .0.  ->  ( U  o.  s )  =  (  .0.  o.  s
) )
19 simp1 957 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
20 simp3l 985 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
s  e.  E )
211, 2, 3, 4, 5tendo0mul 30283 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  (  .0.  o.  s )  =  .0.  )
2219, 20, 21syl2anc 644 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
(  .0.  o.  s
)  =  .0.  )
2318, 22sylan9eqr 2339 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  /\  U  =  .0.  )  ->  ( U  o.  s
)  =  .0.  )
2417, 23eqtr3d 2319 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  /\  U  =  .0.  )  ->  (  _I  |`  T )  =  .0.  )
2524ex 425 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
( U  =  .0. 
->  (  _I  |`  T )  =  .0.  ) )
2625necon3d 2486 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
( (  _I  |`  T )  =/=  .0.  ->  U  =/=  .0.  ) )
277, 26mpd 16 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  U  =/=  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685    =/= wne 2448   A.wral 2545   ifcif 3567    e. cmpt 4079    _I cid 4304   `'ccnv 4688    |` cres 4691    o. ccom 4693   ` cfv 5222  (class class class)co 5820   iota_crio 6291   Basecbs 13143   occoc 13211   joincjn 14073   meetcmee 14074   HLchlt 28808   LHypclh 29441   LTrncltrn 29558   trLctrl 29615   TEndoctendo 30209
This theorem is referenced by:  erngdvlem4  30448  erngdvlem4-rN  30456
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-fal 1313  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-undef 6292  df-riota 6300  df-map 6770  df-poset 14075  df-plt 14087  df-lub 14103  df-glb 14104  df-join 14105  df-meet 14106  df-p0 14140  df-p1 14141  df-lat 14147  df-clat 14209  df-oposet 28634  df-ol 28636  df-oml 28637  df-covers 28724  df-ats 28725  df-atl 28756  df-cvlat 28780  df-hlat 28809  df-llines 28955  df-lplanes 28956  df-lvols 28957  df-lines 28958  df-psubsp 28960  df-pmap 28961  df-padd 29253  df-lhyp 29445  df-laut 29446  df-ldil 29561  df-ltrn 29562  df-trl 29616  df-tendo 30212
  Copyright terms: Public domain W3C validator