Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn2 Unicode version

Theorem cdlemn2 30652
Description: Part of proof of Lemma N of [Crawley] p. 121 line 30. (Contributed by NM, 21-Feb-2014.)
Hypotheses
Ref Expression
cdlemn2.b  |-  B  =  ( Base `  K
)
cdlemn2.l  |-  .<_  =  ( le `  K )
cdlemn2.j  |-  .\/  =  ( join `  K )
cdlemn2.a  |-  A  =  ( Atoms `  K )
cdlemn2.h  |-  H  =  ( LHyp `  K
)
cdlemn2.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemn2.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemn2.f  |-  F  =  ( iota_ h  e.  T
( h `  Q
)  =  S )
Assertion
Ref Expression
cdlemn2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( R `  F )  .<_  X )
Distinct variable groups:    .<_ , h    A, h    h, H    h, K    Q, h    S, h    T, h   
h, W
Allowed substitution hints:    B( h)    R( h)    F( h)    .\/ ( h)    X( h)

Proof of Theorem cdlemn2
StepHypRef Expression
1 simp1 957 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp21 990 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
3 simp22 991 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
4 cdlemn2.l . . . . . . 7  |-  .<_  =  ( le `  K )
5 cdlemn2.a . . . . . . 7  |-  A  =  ( Atoms `  K )
6 cdlemn2.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
7 cdlemn2.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
8 cdlemn2.f . . . . . . 7  |-  F  =  ( iota_ h  e.  T
( h `  Q
)  =  S )
94, 5, 6, 7, 8ltrniotacl 30035 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  F  e.  T )
101, 2, 3, 9syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  F  e.  T )
11 cdlemn2.j . . . . . 6  |-  .\/  =  ( join `  K )
12 eqid 2284 . . . . . 6  |-  ( meet `  K )  =  (
meet `  K )
13 cdlemn2.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
144, 11, 12, 5, 6, 7, 13trlval2 29619 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( R `  F )  =  ( ( Q  .\/  ( F `  Q )
) ( meet `  K
) W ) )
151, 10, 2, 14syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( R `  F )  =  ( ( Q 
.\/  ( F `  Q ) ) (
meet `  K ) W ) )
164, 5, 6, 7, 8ltrniotaval 30037 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( F `  Q )  =  S )
171, 2, 3, 16syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( F `  Q )  =  S )
1817oveq2d 5835 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( Q  .\/  ( F `  Q ) )  =  ( Q  .\/  S
) )
1918oveq1d 5834 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  (
( Q  .\/  ( F `  Q )
) ( meet `  K
) W )  =  ( ( Q  .\/  S ) ( meet `  K
) W ) )
2015, 19eqtrd 2316 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( R `  F )  =  ( ( Q 
.\/  S ) (
meet `  K ) W ) )
21 simp1l 981 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  K  e.  HL )
22 hllat 28820 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
2321, 22syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  K  e.  Lat )
24 simp21l 1074 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  Q  e.  A )
25 cdlemn2.b . . . . . . . 8  |-  B  =  ( Base `  K
)
2625, 5atbase 28746 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  B )
2724, 26syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  Q  e.  B )
28 simp23l 1078 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  X  e.  B )
2925, 4, 11latlej1 14160 . . . . . 6  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  X  e.  B )  ->  Q  .<_  ( Q  .\/  X ) )
3023, 27, 28, 29syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  Q  .<_  ( Q  .\/  X
) )
31 simp3 959 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  S  .<_  ( Q  .\/  X
) )
32 simp22l 1076 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  S  e.  A )
3325, 5atbase 28746 . . . . . . 7  |-  ( S  e.  A  ->  S  e.  B )
3432, 33syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  S  e.  B )
3525, 11latjcl 14150 . . . . . . 7  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  X  e.  B )  ->  ( Q  .\/  X
)  e.  B )
3623, 27, 28, 35syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( Q  .\/  X )  e.  B )
3725, 4, 11latjle12 14162 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Q  e.  B  /\  S  e.  B  /\  ( Q  .\/  X
)  e.  B ) )  ->  ( ( Q  .<_  ( Q  .\/  X )  /\  S  .<_  ( Q  .\/  X ) )  <->  ( Q  .\/  S )  .<_  ( Q  .\/  X ) ) )
3823, 27, 34, 36, 37syl13anc 1186 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  (
( Q  .<_  ( Q 
.\/  X )  /\  S  .<_  ( Q  .\/  X ) )  <->  ( Q  .\/  S )  .<_  ( Q 
.\/  X ) ) )
3930, 31, 38mpbi2and 889 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( Q  .\/  S )  .<_  ( Q  .\/  X ) )
4025, 11, 5hlatjcl 28823 . . . . . 6  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  S  e.  A )  ->  ( Q  .\/  S
)  e.  B )
4121, 24, 32, 40syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( Q  .\/  S )  e.  B )
42 simp1r 982 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  W  e.  H )
4325, 6lhpbase 29454 . . . . . 6  |-  ( W  e.  H  ->  W  e.  B )
4442, 43syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  W  e.  B )
4525, 4, 12latmlem1 14181 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( Q  .\/  S )  e.  B  /\  ( Q  .\/  X )  e.  B  /\  W  e.  B ) )  -> 
( ( Q  .\/  S )  .<_  ( Q  .\/  X )  ->  (
( Q  .\/  S
) ( meet `  K
) W )  .<_  ( ( Q  .\/  X ) ( meet `  K
) W ) ) )
4623, 41, 36, 44, 45syl13anc 1186 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  (
( Q  .\/  S
)  .<_  ( Q  .\/  X )  ->  ( ( Q  .\/  S ) (
meet `  K ) W )  .<_  ( ( Q  .\/  X ) ( meet `  K
) W ) ) )
4739, 46mpd 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  (
( Q  .\/  S
) ( meet `  K
) W )  .<_  ( ( Q  .\/  X ) ( meet `  K
) W ) )
4820, 47eqbrtrd 4044 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( R `  F )  .<_  ( ( Q  .\/  X ) ( meet `  K
) W ) )
49 simp23 992 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( X  e.  B  /\  X  .<_  W ) )
5025, 4, 11, 12, 5, 6lhple 29498 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( ( Q 
.\/  X ) (
meet `  K ) W )  =  X )
511, 2, 49, 50syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  (
( Q  .\/  X
) ( meet `  K
) W )  =  X )
5248, 51breqtrd 4048 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( R `  F )  .<_  X )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   iota_crio 6290   Basecbs 13142   lecple 13209   joincjn 14072   meetcmee 14073   Latclat 14145   Atomscatm 28720   HLchlt 28807   LHypclh 29440   LTrncltrn 29557   trLctrl 29614
This theorem is referenced by:  cdlemn2a  30653
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-undef 6291  df-riota 6299  df-map 6769  df-poset 14074  df-plt 14086  df-lub 14102  df-glb 14103  df-join 14104  df-meet 14105  df-p0 14139  df-p1 14140  df-lat 14146  df-clat 14208  df-oposet 28633  df-ol 28635  df-oml 28636  df-covers 28723  df-ats 28724  df-atl 28755  df-cvlat 28779  df-hlat 28808  df-llines 28954  df-lplanes 28955  df-lvols 28956  df-lines 28957  df-psubsp 28959  df-pmap 28960  df-padd 29252  df-lhyp 29444  df-laut 29445  df-ldil 29560  df-ltrn 29561  df-trl 29615
  Copyright terms: Public domain W3C validator