Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn2 Unicode version

Theorem cdlemn2 30289
Description: Part of proof of Lemma N of [Crawley] p. 121 line 30. (Contributed by NM, 21-Feb-2014.)
Hypotheses
Ref Expression
cdlemn2.b  |-  B  =  ( Base `  K
)
cdlemn2.l  |-  .<_  =  ( le `  K )
cdlemn2.j  |-  .\/  =  ( join `  K )
cdlemn2.a  |-  A  =  ( Atoms `  K )
cdlemn2.h  |-  H  =  ( LHyp `  K
)
cdlemn2.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemn2.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemn2.f  |-  F  =  ( iota_ h  e.  T
( h `  Q
)  =  S )
Assertion
Ref Expression
cdlemn2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( R `  F )  .<_  X )
Distinct variable groups:    .<_ , h    A, h    h, H    h, K    Q, h    S, h    T, h   
h, W
Allowed substitution hints:    B( h)    R( h)    F( h)    .\/ ( h)    X( h)

Proof of Theorem cdlemn2
StepHypRef Expression
1 simp1 960 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp21 993 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
3 simp22 994 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
4 cdlemn2.l . . . . . . 7  |-  .<_  =  ( le `  K )
5 cdlemn2.a . . . . . . 7  |-  A  =  ( Atoms `  K )
6 cdlemn2.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
7 cdlemn2.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
8 cdlemn2.f . . . . . . 7  |-  F  =  ( iota_ h  e.  T
( h `  Q
)  =  S )
94, 5, 6, 7, 8ltrniotacl 29672 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  F  e.  T )
101, 2, 3, 9syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  F  e.  T )
11 cdlemn2.j . . . . . 6  |-  .\/  =  ( join `  K )
12 eqid 2253 . . . . . 6  |-  ( meet `  K )  =  (
meet `  K )
13 cdlemn2.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
144, 11, 12, 5, 6, 7, 13trlval2 29256 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( R `  F )  =  ( ( Q  .\/  ( F `  Q )
) ( meet `  K
) W ) )
151, 10, 2, 14syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( R `  F )  =  ( ( Q 
.\/  ( F `  Q ) ) (
meet `  K ) W ) )
164, 5, 6, 7, 8ltrniotaval 29674 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( F `  Q )  =  S )
171, 2, 3, 16syl3anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( F `  Q )  =  S )
1817oveq2d 5726 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( Q  .\/  ( F `  Q ) )  =  ( Q  .\/  S
) )
1918oveq1d 5725 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  (
( Q  .\/  ( F `  Q )
) ( meet `  K
) W )  =  ( ( Q  .\/  S ) ( meet `  K
) W ) )
2015, 19eqtrd 2285 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( R `  F )  =  ( ( Q 
.\/  S ) (
meet `  K ) W ) )
21 simp1l 984 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  K  e.  HL )
22 hllat 28457 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
2321, 22syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  K  e.  Lat )
24 simp21l 1077 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  Q  e.  A )
25 cdlemn2.b . . . . . . . 8  |-  B  =  ( Base `  K
)
2625, 5atbase 28383 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  B )
2724, 26syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  Q  e.  B )
28 simp23l 1081 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  X  e.  B )
2925, 4, 11latlej1 14010 . . . . . 6  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  X  e.  B )  ->  Q  .<_  ( Q  .\/  X ) )
3023, 27, 28, 29syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  Q  .<_  ( Q  .\/  X
) )
31 simp3 962 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  S  .<_  ( Q  .\/  X
) )
32 simp22l 1079 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  S  e.  A )
3325, 5atbase 28383 . . . . . . 7  |-  ( S  e.  A  ->  S  e.  B )
3432, 33syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  S  e.  B )
3525, 11latjcl 14000 . . . . . . 7  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  X  e.  B )  ->  ( Q  .\/  X
)  e.  B )
3623, 27, 28, 35syl3anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( Q  .\/  X )  e.  B )
3725, 4, 11latjle12 14012 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Q  e.  B  /\  S  e.  B  /\  ( Q  .\/  X
)  e.  B ) )  ->  ( ( Q  .<_  ( Q  .\/  X )  /\  S  .<_  ( Q  .\/  X ) )  <->  ( Q  .\/  S )  .<_  ( Q  .\/  X ) ) )
3823, 27, 34, 36, 37syl13anc 1189 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  (
( Q  .<_  ( Q 
.\/  X )  /\  S  .<_  ( Q  .\/  X ) )  <->  ( Q  .\/  S )  .<_  ( Q 
.\/  X ) ) )
3930, 31, 38mpbi2and 892 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( Q  .\/  S )  .<_  ( Q  .\/  X ) )
4025, 11, 5hlatjcl 28460 . . . . . 6  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  S  e.  A )  ->  ( Q  .\/  S
)  e.  B )
4121, 24, 32, 40syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( Q  .\/  S )  e.  B )
42 simp1r 985 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  W  e.  H )
4325, 6lhpbase 29091 . . . . . 6  |-  ( W  e.  H  ->  W  e.  B )
4442, 43syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  W  e.  B )
4525, 4, 12latmlem1 14031 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( Q  .\/  S )  e.  B  /\  ( Q  .\/  X )  e.  B  /\  W  e.  B ) )  -> 
( ( Q  .\/  S )  .<_  ( Q  .\/  X )  ->  (
( Q  .\/  S
) ( meet `  K
) W )  .<_  ( ( Q  .\/  X ) ( meet `  K
) W ) ) )
4623, 41, 36, 44, 45syl13anc 1189 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  (
( Q  .\/  S
)  .<_  ( Q  .\/  X )  ->  ( ( Q  .\/  S ) (
meet `  K ) W )  .<_  ( ( Q  .\/  X ) ( meet `  K
) W ) ) )
4739, 46mpd 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  (
( Q  .\/  S
) ( meet `  K
) W )  .<_  ( ( Q  .\/  X ) ( meet `  K
) W ) )
4820, 47eqbrtrd 3940 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( R `  F )  .<_  ( ( Q  .\/  X ) ( meet `  K
) W ) )
49 simp23 995 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( X  e.  B  /\  X  .<_  W ) )
5025, 4, 11, 12, 5, 6lhple 29135 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( ( Q 
.\/  X ) (
meet `  K ) W )  =  X )
511, 2, 49, 50syl3anc 1187 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  (
( Q  .\/  X
) ( meet `  K
) W )  =  X )
5248, 51breqtrd 3944 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( R `  F )  .<_  X )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   iota_crio 6181   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   Latclat 13995   Atomscatm 28357   HLchlt 28444   LHypclh 29077   LTrncltrn 29194   trLctrl 29251
This theorem is referenced by:  cdlemn2a  30290
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-map 6660  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28270  df-ol 28272  df-oml 28273  df-covers 28360  df-ats 28361  df-atl 28392  df-cvlat 28416  df-hlat 28445  df-llines 28591  df-lplanes 28592  df-lvols 28593  df-lines 28594  df-psubsp 28596  df-pmap 28597  df-padd 28889  df-lhyp 29081  df-laut 29082  df-ldil 29197  df-ltrn 29198  df-trl 29252
  Copyright terms: Public domain W3C validator