Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn2a Unicode version

Theorem cdlemn2a 31833
Description: Part of proof of Lemma N of [Crawley] p. 121. (Contributed by NM, 24-Feb-2014.)
Hypotheses
Ref Expression
cdlemn2a.b  |-  B  =  ( Base `  K
)
cdlemn2a.l  |-  .<_  =  ( le `  K )
cdlemn2a.j  |-  .\/  =  ( join `  K )
cdlemn2a.a  |-  A  =  ( Atoms `  K )
cdlemn2a.h  |-  H  =  ( LHyp `  K
)
cdlemn2a.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemn2a.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemn2a.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
cdlemn2a.i  |-  I  =  ( ( DIsoB `  K
) `  W )
cdlemn2a.u  |-  U  =  ( ( DVecH `  K
) `  W )
cdlemn2a.n  |-  N  =  ( LSpan `  U )
cdlemn2a.f  |-  F  =  ( iota_ h  e.  T
( h `  Q
)  =  S )
Assertion
Ref Expression
cdlemn2a  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( N `  { <. F ,  O >. } )  C_  ( I `  X
) )
Distinct variable groups:    .<_ , h    A, h    B, f    h, H   
f, K    h, K    Q, h    S, h    T, f    T, h    f, W    h, W
Allowed substitution hints:    A( f)    B( h)    Q( f)    R( f, h)    S( f)    U( f, h)    F( f, h)    H( f)    I( f, h)    .\/ ( f, h)   
.<_ ( f)    N( f, h)    O( f, h)    X( f, h)

Proof of Theorem cdlemn2a
StepHypRef Expression
1 simp1 957 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp21 990 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
3 simp22 991 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
4 cdlemn2a.l . . . . 5  |-  .<_  =  ( le `  K )
5 cdlemn2a.a . . . . 5  |-  A  =  ( Atoms `  K )
6 cdlemn2a.h . . . . 5  |-  H  =  ( LHyp `  K
)
7 cdlemn2a.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
8 cdlemn2a.f . . . . 5  |-  F  =  ( iota_ h  e.  T
( h `  Q
)  =  S )
94, 5, 6, 7, 8ltrniotacl 31215 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  F  e.  T )
101, 2, 3, 9syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  F  e.  T )
11 cdlemn2a.b . . . 4  |-  B  =  ( Base `  K
)
12 cdlemn2a.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
13 cdlemn2a.o . . . 4  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
14 cdlemn2a.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
15 cdlemn2a.i . . . 4  |-  I  =  ( ( DIsoB `  K
) `  W )
16 cdlemn2a.n . . . 4  |-  N  =  ( LSpan `  U )
1711, 6, 7, 12, 13, 14, 15, 16dib1dim2 31805 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( I `  ( R `  F
) )  =  ( N `  { <. F ,  O >. } ) )
181, 10, 17syl2anc 643 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  (
I `  ( R `  F ) )  =  ( N `  { <. F ,  O >. } ) )
19 cdlemn2a.j . . . 4  |-  .\/  =  ( join `  K )
2011, 4, 19, 5, 6, 7, 12, 8cdlemn2 31832 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( R `  F )  .<_  X )
2111, 6, 7, 12trlcl 30800 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  B
)
221, 10, 21syl2anc 643 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( R `  F )  e.  B )
234, 6, 7, 12trlle 30820 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  .<_  W )
241, 10, 23syl2anc 643 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( R `  F )  .<_  W )
25 simp23 992 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( X  e.  B  /\  X  .<_  W ) )
2611, 4, 6, 15dibord 31796 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R `
 F )  e.  B  /\  ( R `
 F )  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( ( I `
 ( R `  F ) )  C_  ( I `  X
)  <->  ( R `  F )  .<_  X ) )
271, 22, 24, 25, 26syl121anc 1189 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  (
( I `  ( R `  F )
)  C_  ( I `  X )  <->  ( R `  F )  .<_  X ) )
2820, 27mpbird 224 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  (
I `  ( R `  F ) )  C_  ( I `  X
) )
2918, 28eqsstr3d 3375 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  S  .<_  ( Q  .\/  X
) )  ->  ( N `  { <. F ,  O >. } )  C_  ( I `  X
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    C_ wss 3312   {csn 3806   <.cop 3809   class class class wbr 4204    e. cmpt 4258    _I cid 4485    |` cres 4871   ` cfv 5445  (class class class)co 6072   iota_crio 6533   Basecbs 13457   lecple 13524   joincjn 14389   LSpanclspn 16035   Atomscatm 29900   HLchlt 29987   LHypclh 30620   LTrncltrn 30737   trLctrl 30794   DVecHcdvh 31715   DIsoBcdib 31775
This theorem is referenced by:  cdlemn5pre  31837
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-fal 1329  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-tpos 6470  df-undef 6534  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-oadd 6719  df-er 6896  df-map 7011  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-nn 9990  df-2 10047  df-3 10048  df-4 10049  df-5 10050  df-6 10051  df-n0 10211  df-z 10272  df-uz 10478  df-fz 11033  df-struct 13459  df-ndx 13460  df-slot 13461  df-base 13462  df-sets 13463  df-ress 13464  df-plusg 13530  df-mulr 13531  df-sca 13533  df-vsca 13534  df-0g 13715  df-poset 14391  df-plt 14403  df-lub 14419  df-glb 14420  df-join 14421  df-meet 14422  df-p0 14456  df-p1 14457  df-lat 14463  df-clat 14525  df-mnd 14678  df-grp 14800  df-minusg 14801  df-sbg 14802  df-mgp 15637  df-rng 15651  df-ur 15653  df-oppr 15716  df-dvdsr 15734  df-unit 15735  df-invr 15765  df-dvr 15776  df-drng 15825  df-lmod 15940  df-lss 15997  df-lsp 16036  df-lvec 16163  df-oposet 29813  df-ol 29815  df-oml 29816  df-covers 29903  df-ats 29904  df-atl 29935  df-cvlat 29959  df-hlat 29988  df-llines 30134  df-lplanes 30135  df-lvols 30136  df-lines 30137  df-psubsp 30139  df-pmap 30140  df-padd 30432  df-lhyp 30624  df-laut 30625  df-ldil 30740  df-ltrn 30741  df-trl 30795  df-tendo 31391  df-edring 31393  df-disoa 31666  df-dvech 31716  df-dib 31776
  Copyright terms: Public domain W3C validator