Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn3 Structured version   Unicode version

Theorem cdlemn3 31932
Description: Part of proof of Lemma N of [Crawley] p. 121 line 31. (Contributed by NM, 21-Feb-2014.)
Hypotheses
Ref Expression
cdlemn3.l  |-  .<_  =  ( le `  K )
cdlemn3.a  |-  A  =  ( Atoms `  K )
cdlemn3.p  |-  P  =  ( ( oc `  K ) `  W
)
cdlemn3.h  |-  H  =  ( LHyp `  K
)
cdlemn3.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemn3.f  |-  F  =  ( iota_ h  e.  T
( h `  P
)  =  Q )
cdlemn3.g  |-  G  =  ( iota_ h  e.  T
( h `  P
)  =  R )
cdlemn3.j  |-  J  =  ( iota_ h  e.  T
( h `  Q
)  =  R )
Assertion
Ref Expression
cdlemn3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( J  o.  F )  =  G )
Distinct variable groups:    .<_ , h    A, h    h, H    h, K    P, h    Q, h    R, h    T, h    h, W
Allowed substitution hints:    F( h)    G( h)    J( h)

Proof of Theorem cdlemn3
StepHypRef Expression
1 simp1 957 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 cdlemn3.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
3 cdlemn3.a . . . . . . . . . 10  |-  A  =  ( Atoms `  K )
4 cdlemn3.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
5 cdlemn3.p . . . . . . . . . 10  |-  P  =  ( ( oc `  K ) `  W
)
62, 3, 4, 5lhpocnel2 30753 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
763ad2ant1 978 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
8 simp2 958 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
9 cdlemn3.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
10 cdlemn3.f . . . . . . . . 9  |-  F  =  ( iota_ h  e.  T
( h `  P
)  =  Q )
112, 3, 4, 9, 10ltrniotacl 31313 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
121, 7, 8, 11syl3anc 1184 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  F  e.  T )
13 eqid 2435 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
1413, 4, 9ltrn1o 30858 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
151, 12, 14syl2anc 643 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
16 f1of 5666 . . . . . 6  |-  ( F : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  F : ( Base `  K ) --> ( Base `  K ) )
1715, 16syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  F :
( Base `  K ) --> ( Base `  K )
)
187simpld 446 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  P  e.  A )
1913, 3atbase 30024 . . . . . 6  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2018, 19syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  P  e.  ( Base `  K )
)
21 fvco3 5792 . . . . 5  |-  ( ( F : ( Base `  K ) --> ( Base `  K )  /\  P  e.  ( Base `  K
) )  ->  (
( J  o.  F
) `  P )  =  ( J `  ( F `  P ) ) )
2217, 20, 21syl2anc 643 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( ( J  o.  F ) `  P )  =  ( J `  ( F `
 P ) ) )
232, 3, 4, 9, 10ltrniotaval 31315 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( F `  P )  =  Q )
241, 7, 8, 23syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( F `  P )  =  Q )
2524fveq2d 5724 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( J `  ( F `  P
) )  =  ( J `  Q ) )
26 cdlemn3.j . . . . 5  |-  J  =  ( iota_ h  e.  T
( h `  Q
)  =  R )
272, 3, 4, 9, 26ltrniotaval 31315 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( J `  Q )  =  R )
2822, 25, 273eqtrd 2471 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( ( J  o.  F ) `  P )  =  R )
29 cdlemn3.g . . . . 5  |-  G  =  ( iota_ h  e.  T
( h `  P
)  =  R )
302, 3, 4, 9, 29ltrniotaval 31315 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( G `  P )  =  R )
317, 30syld3an2 1231 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( G `  P )  =  R )
3228, 31eqtr4d 2470 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( ( J  o.  F ) `  P )  =  ( G `  P ) )
332, 3, 4, 9, 26ltrniotacl 31313 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  J  e.  T )
344, 9ltrnco 31453 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  J  e.  T  /\  F  e.  T
)  ->  ( J  o.  F )  e.  T
)
351, 33, 12, 34syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( J  o.  F )  e.  T
)
362, 3, 4, 9, 29ltrniotacl 31313 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  G  e.  T )
377, 36syld3an2 1231 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  G  e.  T )
382, 3, 4, 9ltrneq3 30942 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( J  o.  F )  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( J  o.  F
) `  P )  =  ( G `  P )  <->  ( J  o.  F )  =  G ) )
391, 35, 37, 7, 38syl121anc 1189 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( (
( J  o.  F
) `  P )  =  ( G `  P )  <->  ( J  o.  F )  =  G ) )
4032, 39mpbid 202 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( J  o.  F )  =  G )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4204    o. ccom 4874   -->wf 5442   -1-1-onto->wf1o 5445   ` cfv 5446   iota_crio 6534   Basecbs 13461   lecple 13528   occoc 13529   Atomscatm 29998   HLchlt 30085   LHypclh 30718   LTrncltrn 30835
This theorem is referenced by:  cdlemn4  31933
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-map 7012  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-p1 14461  df-lat 14467  df-clat 14529  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-llines 30232  df-lplanes 30233  df-lvols 30234  df-lines 30235  df-psubsp 30237  df-pmap 30238  df-padd 30530  df-lhyp 30722  df-laut 30723  df-ldil 30838  df-ltrn 30839  df-trl 30893
  Copyright terms: Public domain W3C validator