Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn3 Unicode version

Theorem cdlemn3 31684
Description: Part of proof of Lemma N of [Crawley] p. 121 line 31. (Contributed by NM, 21-Feb-2014.)
Hypotheses
Ref Expression
cdlemn3.l  |-  .<_  =  ( le `  K )
cdlemn3.a  |-  A  =  ( Atoms `  K )
cdlemn3.p  |-  P  =  ( ( oc `  K ) `  W
)
cdlemn3.h  |-  H  =  ( LHyp `  K
)
cdlemn3.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemn3.f  |-  F  =  ( iota_ h  e.  T
( h `  P
)  =  Q )
cdlemn3.g  |-  G  =  ( iota_ h  e.  T
( h `  P
)  =  R )
cdlemn3.j  |-  J  =  ( iota_ h  e.  T
( h `  Q
)  =  R )
Assertion
Ref Expression
cdlemn3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( J  o.  F )  =  G )
Distinct variable groups:    .<_ , h    A, h    h, H    h, K    P, h    Q, h    R, h    T, h    h, W
Allowed substitution hints:    F( h)    G( h)    J( h)

Proof of Theorem cdlemn3
StepHypRef Expression
1 simp1 957 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 cdlemn3.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
3 cdlemn3.a . . . . . . . . . 10  |-  A  =  ( Atoms `  K )
4 cdlemn3.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
5 cdlemn3.p . . . . . . . . . 10  |-  P  =  ( ( oc `  K ) `  W
)
62, 3, 4, 5lhpocnel2 30505 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
763ad2ant1 978 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
8 simp2 958 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
9 cdlemn3.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
10 cdlemn3.f . . . . . . . . 9  |-  F  =  ( iota_ h  e.  T
( h `  P
)  =  Q )
112, 3, 4, 9, 10ltrniotacl 31065 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
121, 7, 8, 11syl3anc 1184 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  F  e.  T )
13 eqid 2408 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
1413, 4, 9ltrn1o 30610 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
151, 12, 14syl2anc 643 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
16 f1of 5637 . . . . . 6  |-  ( F : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  F : ( Base `  K ) --> ( Base `  K ) )
1715, 16syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  F :
( Base `  K ) --> ( Base `  K )
)
187simpld 446 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  P  e.  A )
1913, 3atbase 29776 . . . . . 6  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2018, 19syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  P  e.  ( Base `  K )
)
21 fvco3 5763 . . . . 5  |-  ( ( F : ( Base `  K ) --> ( Base `  K )  /\  P  e.  ( Base `  K
) )  ->  (
( J  o.  F
) `  P )  =  ( J `  ( F `  P ) ) )
2217, 20, 21syl2anc 643 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( ( J  o.  F ) `  P )  =  ( J `  ( F `
 P ) ) )
232, 3, 4, 9, 10ltrniotaval 31067 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( F `  P )  =  Q )
241, 7, 8, 23syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( F `  P )  =  Q )
2524fveq2d 5695 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( J `  ( F `  P
) )  =  ( J `  Q ) )
26 cdlemn3.j . . . . 5  |-  J  =  ( iota_ h  e.  T
( h `  Q
)  =  R )
272, 3, 4, 9, 26ltrniotaval 31067 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( J `  Q )  =  R )
2822, 25, 273eqtrd 2444 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( ( J  o.  F ) `  P )  =  R )
29 cdlemn3.g . . . . 5  |-  G  =  ( iota_ h  e.  T
( h `  P
)  =  R )
302, 3, 4, 9, 29ltrniotaval 31067 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( G `  P )  =  R )
317, 30syld3an2 1231 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( G `  P )  =  R )
3228, 31eqtr4d 2443 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( ( J  o.  F ) `  P )  =  ( G `  P ) )
332, 3, 4, 9, 26ltrniotacl 31065 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  J  e.  T )
344, 9ltrnco 31205 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  J  e.  T  /\  F  e.  T
)  ->  ( J  o.  F )  e.  T
)
351, 33, 12, 34syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( J  o.  F )  e.  T
)
362, 3, 4, 9, 29ltrniotacl 31065 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  G  e.  T )
377, 36syld3an2 1231 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  G  e.  T )
382, 3, 4, 9ltrneq3 30694 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( J  o.  F )  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( J  o.  F
) `  P )  =  ( G `  P )  <->  ( J  o.  F )  =  G ) )
391, 35, 37, 7, 38syl121anc 1189 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( (
( J  o.  F
) `  P )  =  ( G `  P )  <->  ( J  o.  F )  =  G ) )
4032, 39mpbid 202 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( J  o.  F )  =  G )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   class class class wbr 4176    o. ccom 4845   -->wf 5413   -1-1-onto->wf1o 5416   ` cfv 5417   iota_crio 6505   Basecbs 13428   lecple 13495   occoc 13496   Atomscatm 29750   HLchlt 29837   LHypclh 30470   LTrncltrn 30587
This theorem is referenced by:  cdlemn4  31685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-undef 6506  df-riota 6512  df-map 6983  df-poset 14362  df-plt 14374  df-lub 14390  df-glb 14391  df-join 14392  df-meet 14393  df-p0 14427  df-p1 14428  df-lat 14434  df-clat 14496  df-oposet 29663  df-ol 29665  df-oml 29666  df-covers 29753  df-ats 29754  df-atl 29785  df-cvlat 29809  df-hlat 29838  df-llines 29984  df-lplanes 29985  df-lvols 29986  df-lines 29987  df-psubsp 29989  df-pmap 29990  df-padd 30282  df-lhyp 30474  df-laut 30475  df-ldil 30590  df-ltrn 30591  df-trl 30645
  Copyright terms: Public domain W3C validator