Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn6 Unicode version

Theorem cdlemn6 30659
Description: Part of proof of Lemma N of [Crawley] p. 121 line 35. (Contributed by NM, 26-Feb-2014.)
Hypotheses
Ref Expression
cdlemn8.b  |-  B  =  ( Base `  K
)
cdlemn8.l  |-  .<_  =  ( le `  K )
cdlemn8.a  |-  A  =  ( Atoms `  K )
cdlemn8.h  |-  H  =  ( LHyp `  K
)
cdlemn8.p  |-  P  =  ( ( oc `  K ) `  W
)
cdlemn8.o  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
cdlemn8.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemn8.e  |-  E  =  ( ( TEndo `  K
) `  W )
cdlemn8.u  |-  U  =  ( ( DVecH `  K
) `  W )
cdlemn8.s  |-  .+  =  ( +g  `  U )
cdlemn8.f  |-  F  =  ( iota_ h  e.  T
( h `  P
)  =  Q )
Assertion
Ref Expression
cdlemn6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( <. ( s `  F ) ,  s
>.  .+  <. g ,  O >. )  =  <. (
( s `  F
)  o.  g ) ,  s >. )
Distinct variable groups:    .<_ , h    A, h    B, h    h, H   
h, K    T, h    P, h    Q, h    h, W
Dummy variables  t  u are mutually distinct and distinct from all other variables.
Allowed substitution hints:    A( g, s)    B( g, s)    P( g, s)    .+ ( g, h, s)    Q( g, s)    R( g, h, s)    T( g, s)    U( g, h, s)    E( g, h, s)    F( g, h, s)    H( g, s)    K( g, s)    .<_ ( g, s)    O( g, h, s)    W( g, s)

Proof of Theorem cdlemn6
StepHypRef Expression
1 simp1 957 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp3l 985 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
s  e.  E )
3 cdlemn8.l . . . . . . 7  |-  .<_  =  ( le `  K )
4 cdlemn8.a . . . . . . 7  |-  A  =  ( Atoms `  K )
5 cdlemn8.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
6 cdlemn8.p . . . . . . 7  |-  P  =  ( ( oc `  K ) `  W
)
73, 4, 5, 6lhpocnel2 29475 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
81, 7syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
9 simp2l 983 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
10 cdlemn8.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
11 cdlemn8.f . . . . . 6  |-  F  =  ( iota_ h  e.  T
( h `  P
)  =  Q )
123, 4, 5, 10, 11ltrniotacl 30035 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
131, 8, 9, 12syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  ->  F  e.  T )
14 cdlemn8.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
155, 10, 14tendocl 30223 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  F  e.  T
)  ->  ( s `  F )  e.  T
)
161, 2, 13, 15syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( s `  F
)  e.  T )
17 simp3r 986 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
g  e.  T )
18 cdlemn8.b . . . . 5  |-  B  =  ( Base `  K
)
19 cdlemn8.o . . . . 5  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
2018, 5, 10, 14, 19tendo0cl 30246 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
211, 20syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  ->  O  e.  E )
22 cdlemn8.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
23 eqid 2284 . . . 4  |-  (Scalar `  U )  =  (Scalar `  U )
24 cdlemn8.s . . . 4  |-  .+  =  ( +g  `  U )
25 eqid 2284 . . . 4  |-  ( +g  `  (Scalar `  U )
)  =  ( +g  `  (Scalar `  U )
)
265, 10, 14, 22, 23, 24, 25dvhopvadd 30550 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s `
 F )  e.  T  /\  s  e.  E )  /\  (
g  e.  T  /\  O  e.  E )
)  ->  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )  =  <. ( ( s `
 F )  o.  g ) ,  ( s ( +g  `  (Scalar `  U ) ) O ) >. )
271, 16, 2, 17, 21, 26syl122anc 1193 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( <. ( s `  F ) ,  s
>.  .+  <. g ,  O >. )  =  <. (
( s `  F
)  o.  g ) ,  ( s ( +g  `  (Scalar `  U ) ) O ) >. )
28 eqid 2284 . . . . . . 7  |-  ( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  ( u `  h ) ) ) )  =  ( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  ( u `  h ) ) ) )
295, 10, 14, 22, 23, 28, 25dvhfplusr 30541 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( +g  `  (Scalar `  U ) )  =  ( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  (
u `  h )
) ) ) )
301, 29syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( +g  `  (Scalar `  U ) )  =  ( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  (
u `  h )
) ) ) )
3130oveqd 5836 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( s ( +g  `  (Scalar `  U )
) O )  =  ( s ( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  ( u `  h ) ) ) ) O ) )
3218, 5, 10, 14, 19, 28tendo0plr 30248 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( s
( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  (
u `  h )
) ) ) O )  =  s )
331, 2, 32syl2anc 644 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( s ( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  ( u `  h ) ) ) ) O )  =  s )
3431, 33eqtrd 2316 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( s ( +g  `  (Scalar `  U )
) O )  =  s )
3534opeq2d 3804 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  ->  <. ( ( s `  F )  o.  g
) ,  ( s ( +g  `  (Scalar `  U ) ) O ) >.  =  <. ( ( s `  F
)  o.  g ) ,  s >. )
3627, 35eqtrd 2316 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( <. ( s `  F ) ,  s
>.  .+  <. g ,  O >. )  =  <. (
( s `  F
)  o.  g ) ,  s >. )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   <.cop 3644   class class class wbr 4024    e. cmpt 4078    _I cid 4303    |` cres 4690    o. ccom 4692   ` cfv 5221  (class class class)co 5819    e. cmpt2 5821   iota_crio 6290   Basecbs 13142   +g cplusg 13202  Scalarcsca 13205   lecple 13209   occoc 13210   Atomscatm 28720   HLchlt 28807   LHypclh 29440   LTrncltrn 29557   TEndoctendo 30208   DVecHcdvh 30535
This theorem is referenced by:  cdlemn7  30660  dihordlem6  30670
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-undef 6291  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-er 6655  df-map 6769  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-n0 9961  df-z 10020  df-uz 10226  df-fz 10777  df-struct 13144  df-ndx 13145  df-slot 13146  df-base 13147  df-plusg 13215  df-mulr 13216  df-sca 13218  df-vsca 13219  df-poset 14074  df-plt 14086  df-lub 14102  df-glb 14103  df-join 14104  df-meet 14105  df-p0 14139  df-p1 14140  df-lat 14146  df-clat 14208  df-oposet 28633  df-ol 28635  df-oml 28636  df-covers 28723  df-ats 28724  df-atl 28755  df-cvlat 28779  df-hlat 28808  df-llines 28954  df-lplanes 28955  df-lvols 28956  df-lines 28957  df-psubsp 28959  df-pmap 28960  df-padd 29252  df-lhyp 29444  df-laut 29445  df-ldil 29560  df-ltrn 29561  df-trl 29615  df-tendo 30211  df-edring 30213  df-dvech 30536
  Copyright terms: Public domain W3C validator