Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn6 Unicode version

Theorem cdlemn6 31392
Description: Part of proof of Lemma N of [Crawley] p. 121 line 35. (Contributed by NM, 26-Feb-2014.)
Hypotheses
Ref Expression
cdlemn8.b  |-  B  =  ( Base `  K
)
cdlemn8.l  |-  .<_  =  ( le `  K )
cdlemn8.a  |-  A  =  ( Atoms `  K )
cdlemn8.h  |-  H  =  ( LHyp `  K
)
cdlemn8.p  |-  P  =  ( ( oc `  K ) `  W
)
cdlemn8.o  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
cdlemn8.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemn8.e  |-  E  =  ( ( TEndo `  K
) `  W )
cdlemn8.u  |-  U  =  ( ( DVecH `  K
) `  W )
cdlemn8.s  |-  .+  =  ( +g  `  U )
cdlemn8.f  |-  F  =  ( iota_ h  e.  T
( h `  P
)  =  Q )
Assertion
Ref Expression
cdlemn6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( <. ( s `  F ) ,  s
>.  .+  <. g ,  O >. )  =  <. (
( s `  F
)  o.  g ) ,  s >. )
Distinct variable groups:    .<_ , h    A, h    B, h    h, H   
h, K    T, h    P, h    Q, h    h, W
Allowed substitution hints:    A( g, s)    B( g, s)    P( g, s)    .+ ( g, h, s)    Q( g, s)    R( g, h, s)    T( g, s)    U( g, h, s)    E( g, h, s)    F( g, h, s)    H( g, s)    K( g, s)    .<_ ( g, s)    O( g, h, s)    W( g, s)

Proof of Theorem cdlemn6
Dummy variables  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp3l 983 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
s  e.  E )
3 cdlemn8.l . . . . . . 7  |-  .<_  =  ( le `  K )
4 cdlemn8.a . . . . . . 7  |-  A  =  ( Atoms `  K )
5 cdlemn8.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
6 cdlemn8.p . . . . . . 7  |-  P  =  ( ( oc `  K ) `  W
)
73, 4, 5, 6lhpocnel2 30208 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
81, 7syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
9 simp2l 981 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
10 cdlemn8.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
11 cdlemn8.f . . . . . 6  |-  F  =  ( iota_ h  e.  T
( h `  P
)  =  Q )
123, 4, 5, 10, 11ltrniotacl 30768 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
131, 8, 9, 12syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  ->  F  e.  T )
14 cdlemn8.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
155, 10, 14tendocl 30956 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  F  e.  T
)  ->  ( s `  F )  e.  T
)
161, 2, 13, 15syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( s `  F
)  e.  T )
17 simp3r 984 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
g  e.  T )
18 cdlemn8.b . . . . 5  |-  B  =  ( Base `  K
)
19 cdlemn8.o . . . . 5  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
2018, 5, 10, 14, 19tendo0cl 30979 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
211, 20syl 15 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  ->  O  e.  E )
22 cdlemn8.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
23 eqid 2283 . . . 4  |-  (Scalar `  U )  =  (Scalar `  U )
24 cdlemn8.s . . . 4  |-  .+  =  ( +g  `  U )
25 eqid 2283 . . . 4  |-  ( +g  `  (Scalar `  U )
)  =  ( +g  `  (Scalar `  U )
)
265, 10, 14, 22, 23, 24, 25dvhopvadd 31283 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s `
 F )  e.  T  /\  s  e.  E )  /\  (
g  e.  T  /\  O  e.  E )
)  ->  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )  =  <. ( ( s `
 F )  o.  g ) ,  ( s ( +g  `  (Scalar `  U ) ) O ) >. )
271, 16, 2, 17, 21, 26syl122anc 1191 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( <. ( s `  F ) ,  s
>.  .+  <. g ,  O >. )  =  <. (
( s `  F
)  o.  g ) ,  ( s ( +g  `  (Scalar `  U ) ) O ) >. )
28 eqid 2283 . . . . . . 7  |-  ( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  ( u `  h ) ) ) )  =  ( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  ( u `  h ) ) ) )
295, 10, 14, 22, 23, 28, 25dvhfplusr 31274 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( +g  `  (Scalar `  U ) )  =  ( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  (
u `  h )
) ) ) )
301, 29syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( +g  `  (Scalar `  U ) )  =  ( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  (
u `  h )
) ) ) )
3130oveqd 5875 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( s ( +g  `  (Scalar `  U )
) O )  =  ( s ( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  ( u `  h ) ) ) ) O ) )
3218, 5, 10, 14, 19, 28tendo0plr 30981 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( s
( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  (
u `  h )
) ) ) O )  =  s )
331, 2, 32syl2anc 642 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( s ( t  e.  E ,  u  e.  E  |->  ( h  e.  T  |->  ( ( t `  h )  o.  ( u `  h ) ) ) ) O )  =  s )
3431, 33eqtrd 2315 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( s ( +g  `  (Scalar `  U )
) O )  =  s )
3534opeq2d 3803 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  ->  <. ( ( s `  F )  o.  g
) ,  ( s ( +g  `  (Scalar `  U ) ) O ) >.  =  <. ( ( s `  F
)  o.  g ) ,  s >. )
3627, 35eqtrd 2315 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T ) )  -> 
( <. ( s `  F ) ,  s
>.  .+  <. g ,  O >. )  =  <. (
( s `  F
)  o.  g ) ,  s >. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   <.cop 3643   class class class wbr 4023    e. cmpt 4077    _I cid 4304    |` cres 4691    o. ccom 4693   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   iota_crio 6297   Basecbs 13148   +g cplusg 13208  Scalarcsca 13211   lecple 13215   occoc 13216   Atomscatm 29453   HLchlt 29540   LHypclh 30173   LTrncltrn 30290   TEndoctendo 30941   DVecHcdvh 31268
This theorem is referenced by:  cdlemn7  31393  dihordlem6  31403
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348  df-tendo 30944  df-edring 30946  df-dvech 31269
  Copyright terms: Public domain W3C validator