Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cesare Structured version   Unicode version

Theorem cesare 2391
 Description: "Cesare", one of the syllogisms of Aristotelian logic. No is , and all is , therefore no is . (In Aristotelian notation, EAE-2: PeM and SaM therefore SeP.) Related to celarent 2386. (Contributed by David A. Wheeler, 27-Aug-2016.) (Revised by David A. Wheeler, 13-Nov-2016.)
Hypotheses
Ref Expression
cesare.maj
cesare.min
Assertion
Ref Expression
cesare

Proof of Theorem cesare
StepHypRef Expression
1 cesare.maj . . . 4
21spi 1772 . . 3
3 cesare.min . . . 4
43spi 1772 . . 3
52, 4nsyl3 114 . 2
65ax-gen 1556 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wal 1550 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-11 1764 This theorem depends on definitions:  df-bi 179  df-ex 1552
 Copyright terms: Public domain W3C validator