MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cf0 Unicode version

Theorem cf0 7845
Description: Value of the cofinality function at 0. Exercise 2 of [TakeutiZaring] p. 102. (Contributed by NM, 16-Apr-2004.)
Assertion
Ref Expression
cf0  |-  ( cf `  (/) )  =  (/)

Proof of Theorem cf0
StepHypRef Expression
1 cfub 7843 . . 3  |-  ( cf `  (/) )  C_  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) ) }
2 0ss 3458 . . . . . . . . . . . . 13  |-  (/)  C_  U. y
32biantru 493 . . . . . . . . . . . 12  |-  ( y 
C_  (/)  <->  ( y  C_  (/) 
/\  (/)  C_  U. y
) )
4 ss0b 3459 . . . . . . . . . . . 12  |-  ( y 
C_  (/)  <->  y  =  (/) )
53, 4bitr3i 244 . . . . . . . . . . 11  |-  ( ( y  C_  (/)  /\  (/)  C_  U. y
)  <->  y  =  (/) )
65anbi2i 678 . . . . . . . . . 10  |-  ( ( x  =  ( card `  y )  /\  (
y  C_  (/)  /\  (/)  C_  U. y
) )  <->  ( x  =  ( card `  y
)  /\  y  =  (/) ) )
7 ancom 439 . . . . . . . . . 10  |-  ( ( x  =  ( card `  y )  /\  y  =  (/) )  <->  ( y  =  (/)  /\  x  =  ( card `  y
) ) )
86, 7bitri 242 . . . . . . . . 9  |-  ( ( x  =  ( card `  y )  /\  (
y  C_  (/)  /\  (/)  C_  U. y
) )  <->  ( y  =  (/)  /\  x  =  ( card `  y
) ) )
98exbii 1580 . . . . . . . 8  |-  ( E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) )  <->  E. y
( y  =  (/)  /\  x  =  ( card `  y ) ) )
10 0ex 4124 . . . . . . . . . 10  |-  (/)  e.  _V
11 fveq2 5458 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( card `  y )  =  (
card `  (/) ) )
1211eqeq2d 2269 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( x  =  ( card `  y
)  <->  x  =  ( card `  (/) ) ) )
1310, 12ceqsexv 2798 . . . . . . . . 9  |-  ( E. y ( y  =  (/)  /\  x  =  (
card `  y )
)  <->  x  =  ( card `  (/) ) )
14 card0 7559 . . . . . . . . . 10  |-  ( card `  (/) )  =  (/)
1514eqeq2i 2268 . . . . . . . . 9  |-  ( x  =  ( card `  (/) )  <->  x  =  (/) )
1613, 15bitri 242 . . . . . . . 8  |-  ( E. y ( y  =  (/)  /\  x  =  (
card `  y )
)  <->  x  =  (/) )
179, 16bitri 242 . . . . . . 7  |-  ( E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) )  <->  x  =  (/) )
1817abbii 2370 . . . . . 6  |-  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) ) }  =  { x  |  x  =  (/) }
19 df-sn 3620 . . . . . 6  |-  { (/) }  =  { x  |  x  =  (/) }
2018, 19eqtr4i 2281 . . . . 5  |-  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) ) }  =  { (/) }
2120inteqi 3840 . . . 4  |-  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) ) }  =  |^| { (/) }
2210intsn 3872 . . . 4  |-  |^| { (/) }  =  (/)
2321, 22eqtri 2278 . . 3  |-  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) ) }  =  (/)
241, 23sseqtri 3185 . 2  |-  ( cf `  (/) )  C_  (/)
25 ss0b 3459 . 2  |-  ( ( cf `  (/) )  C_  (/)  <->  ( cf `  (/) )  =  (/) )
2624, 25mpbi 201 1  |-  ( cf `  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    /\ wa 360   E.wex 1537    = wceq 1619   {cab 2244    C_ wss 3127   (/)c0 3430   {csn 3614   U.cuni 3801   |^|cint 3836   ` cfv 4673   cardccrd 7536   cfccf 7538
This theorem is referenced by:  cfeq0  7850  cflim2  7857  cfidm  7869  alephsing  7870  alephreg  8172  pwcfsdom  8173  rankcf  8367
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-en 6832  df-card 7540  df-cf 7542
  Copyright terms: Public domain W3C validator