MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfcof Unicode version

Theorem cfcof 8143
Description: If there is a cofinal map from  A to  B, then they have the same cofinality. This was used as Definition 11.1 of [TakeutiZaring] p. 100, who defines an equivalence relation cof  ( A ,  B ) and defines our  cf ( B ) as the minimum  B such that cof  ( A ,  B
). (Contributed by Mario Carneiro, 20-Mar-2013.)
Assertion
Ref Expression
cfcof  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( cf `  A )  =  ( cf `  B
) ) )
Distinct variable groups:    w, f,
z, A    B, f, w, z

Proof of Theorem cfcof
Dummy variables  c 
g  h  k  r  s  t  x  y  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfcoflem 8141 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( cf `  A )  C_  ( cf `  B ) ) )
21imp 419 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) ) )  -> 
( cf `  A
)  C_  ( cf `  B ) )
3 cff1 8127 . . . . . . 7  |-  ( A  e.  On  ->  E. g
( g : ( cf `  A )
-1-1-> A  /\  A. s  e.  A  E. t  e.  ( cf `  A
) s  C_  (
g `  t )
) )
4 f1f 5630 . . . . . . . . 9  |-  ( g : ( cf `  A
) -1-1-> A  ->  g : ( cf `  A
) --> A )
54anim1i 552 . . . . . . . 8  |-  ( ( g : ( cf `  A ) -1-1-> A  /\  A. s  e.  A  E. t  e.  ( cf `  A ) s  C_  ( g `  t
) )  ->  (
g : ( cf `  A ) --> A  /\  A. s  e.  A  E. t  e.  ( cf `  A ) s  C_  ( g `  t
) ) )
65eximi 1585 . . . . . . 7  |-  ( E. g ( g : ( cf `  A
) -1-1-> A  /\  A. s  e.  A  E. t  e.  ( cf `  A
) s  C_  (
g `  t )
)  ->  E. g
( g : ( cf `  A ) --> A  /\  A. s  e.  A  E. t  e.  ( cf `  A
) s  C_  (
g `  t )
) )
73, 6syl 16 . . . . . 6  |-  ( A  e.  On  ->  E. g
( g : ( cf `  A ) --> A  /\  A. s  e.  A  E. t  e.  ( cf `  A
) s  C_  (
g `  t )
) )
8 eqid 2435 . . . . . . 7  |-  ( y  e.  ( cf `  A
)  |->  |^| { v  e.  B  |  ( g `
 y )  C_  ( f `  v
) } )  =  ( y  e.  ( cf `  A ) 
|->  |^| { v  e.  B  |  ( g `
 y )  C_  ( f `  v
) } )
98coftr 8142 . . . . . 6  |-  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  (
f `  w )
)  ->  ( E. g ( g : ( cf `  A
) --> A  /\  A. s  e.  A  E. t  e.  ( cf `  A ) s  C_  ( g `  t
) )  ->  E. h
( h : ( cf `  A ) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A
) r  C_  (
h `  t )
) ) )
107, 9syl5com 28 . . . . 5  |-  ( A  e.  On  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  (
f `  w )
)  ->  E. h
( h : ( cf `  A ) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A
) r  C_  (
h `  t )
) ) )
11 eloni 4583 . . . . . . 7  |-  ( B  e.  On  ->  Ord  B )
12 cfon 8124 . . . . . . 7  |-  ( cf `  A )  e.  On
13 eqid 2435 . . . . . . . 8  |-  { x  e.  ( cf `  A
)  |  A. t  e.  x  ( h `  t )  e.  ( h `  x ) }  =  { x  e.  ( cf `  A
)  |  A. t  e.  x  ( h `  t )  e.  ( h `  x ) }
14 eqid 2435 . . . . . . . 8  |-  |^| { c  e.  ( cf `  A
)  |  r  C_  ( h `  c
) }  =  |^| { c  e.  ( cf `  A )  |  r 
C_  ( h `  c ) }
15 eqid 2435 . . . . . . . 8  |- OrdIso (  _E  ,  { x  e.  ( cf `  A
)  |  A. t  e.  x  ( h `  t )  e.  ( h `  x ) } )  = OrdIso (  _E  ,  { x  e.  ( cf `  A
)  |  A. t  e.  x  ( h `  t )  e.  ( h `  x ) } )
1613, 14, 15cofsmo 8138 . . . . . . 7  |-  ( ( Ord  B  /\  ( cf `  A )  e.  On )  ->  ( E. h ( h : ( cf `  A
) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A ) r  C_  ( h `  t
) )  ->  E. c  e.  suc  ( cf `  A
) E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) ) )
1711, 12, 16sylancl 644 . . . . . 6  |-  ( B  e.  On  ->  ( E. h ( h : ( cf `  A
) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A ) r  C_  ( h `  t
) )  ->  E. c  e.  suc  ( cf `  A
) E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) ) )
18 3simpb 955 . . . . . . . . . . . 12  |-  ( ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) )  ->  (
k : c --> B  /\  A. r  e.  B  E. s  e.  c  r  C_  (
k `  s )
) )
1918eximi 1585 . . . . . . . . . . 11  |-  ( E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  (
k `  s )
)  ->  E. k
( k : c --> B  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) )
2012onsuci 4809 . . . . . . . . . . . . 13  |-  suc  ( cf `  A )  e.  On
2120oneli 4680 . . . . . . . . . . . 12  |-  ( c  e.  suc  ( cf `  A )  ->  c  e.  On )
22 cfflb 8128 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  c  e.  On )  ->  ( E. k ( k : c --> B  /\  A. r  e.  B  E. s  e.  c  r  C_  (
k `  s )
)  ->  ( cf `  B )  C_  c
) )
2321, 22sylan2 461 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  -> 
( E. k ( k : c --> B  /\  A. r  e.  B  E. s  e.  c  r  C_  (
k `  s )
)  ->  ( cf `  B )  C_  c
) )
2419, 23syl5 30 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  -> 
( E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) )  ->  ( cf `  B )  C_  c ) )
2524imp 419 . . . . . . . . 9  |-  ( ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  /\  E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) )  -> 
( cf `  B
)  C_  c )
26 onsssuc 4660 . . . . . . . . . . . 12  |-  ( ( c  e.  On  /\  ( cf `  A )  e.  On )  -> 
( c  C_  ( cf `  A )  <->  c  e.  suc  ( cf `  A
) ) )
2721, 12, 26sylancl 644 . . . . . . . . . . 11  |-  ( c  e.  suc  ( cf `  A )  ->  (
c  C_  ( cf `  A )  <->  c  e.  suc  ( cf `  A
) ) )
2827ibir 234 . . . . . . . . . 10  |-  ( c  e.  suc  ( cf `  A )  ->  c  C_  ( cf `  A
) )
2928ad2antlr 708 . . . . . . . . 9  |-  ( ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  /\  E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) )  -> 
c  C_  ( cf `  A ) )
3025, 29sstrd 3350 . . . . . . . 8  |-  ( ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  /\  E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) )  -> 
( cf `  B
)  C_  ( cf `  A ) )
3130exp31 588 . . . . . . 7  |-  ( B  e.  On  ->  (
c  e.  suc  ( cf `  A )  -> 
( E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) )  ->  ( cf `  B )  C_  ( cf `  A ) ) ) )
3231rexlimdv 2821 . . . . . 6  |-  ( B  e.  On  ->  ( E. c  e.  suc  ( cf `  A ) E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) )  ->  ( cf `  B )  C_  ( cf `  A ) ) )
3317, 32syld 42 . . . . 5  |-  ( B  e.  On  ->  ( E. h ( h : ( cf `  A
) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A ) r  C_  ( h `  t
) )  ->  ( cf `  B )  C_  ( cf `  A ) ) )
3410, 33sylan9 639 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( cf `  B )  C_  ( cf `  A ) ) )
3534imp 419 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) ) )  -> 
( cf `  B
)  C_  ( cf `  A ) )
362, 35eqssd 3357 . 2  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) ) )  -> 
( cf `  A
)  =  ( cf `  B ) )
3736ex 424 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( cf `  A )  =  ( cf `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   {crab 2701    C_ wss 3312   |^|cint 4042    e. cmpt 4258    _E cep 4484   Ord word 4572   Oncon0 4573   suc csuc 4575   -->wf 5441   -1-1->wf1 5442   ` cfv 5445   Smo wsmo 6598  OrdIsocoi 7467   cfccf 7813
This theorem is referenced by:  alephsing  8145
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-riota 6540  df-smo 6599  df-recs 6624  df-er 6896  df-map 7011  df-en 7101  df-dom 7102  df-sdom 7103  df-oi 7468  df-card 7815  df-cf 7817  df-acn 7818
  Copyright terms: Public domain W3C validator