MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfom Structured version   Unicode version

Theorem cfom 8136
Description: Value of the cofinality function at omega (the set of natural numbers). Exercise 4 of [TakeutiZaring] p. 102. (Contributed by NM, 23-Apr-2004.) (Proof shortened by Mario Carneiro, 11-Jun-2015.)
Assertion
Ref Expression
cfom  |-  ( cf ` 
om )  =  om

Proof of Theorem cfom
StepHypRef Expression
1 cfle 8126 . 2  |-  ( cf ` 
om )  C_  om
2 limom 4852 . . . 4  |-  Lim  om
3 omex 7590 . . . . 5  |-  om  e.  _V
43cflim2 8135 . . . 4  |-  ( Lim 
om 
<->  Lim  ( cf `  om ) )
52, 4mpbi 200 . . 3  |-  Lim  ( cf `  om )
6 limomss 4842 . . 3  |-  ( Lim  ( cf `  om )  ->  om  C_  ( cf ` 
om ) )
75, 6ax-mp 8 . 2  |-  om  C_  ( cf `  om )
81, 7eqssi 3356 1  |-  ( cf ` 
om )  =  om
Colors of variables: wff set class
Syntax hints:    = wceq 1652    C_ wss 3312   Lim wlim 4574   omcom 4837   ` cfv 5446   cfccf 7816
This theorem is referenced by:  pwcfsdom  8450  alephom  8452  omina  8558
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-card 7818  df-cf 7820
  Copyright terms: Public domain W3C validator