MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfpwsdom Structured version   Unicode version

Theorem cfpwsdom 8451
Description: A corollary of Konig's Theorem konigth 8436. Theorem 11.29 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.)
Hypothesis
Ref Expression
cfpwsdom.1  |-  B  e. 
_V
Assertion
Ref Expression
cfpwsdom  |-  ( 2o  ~<_  B  ->  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )

Proof of Theorem cfpwsdom
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6098 . . . . . . . . 9  |-  ( B  ^m  ( aleph `  A
) )  e.  _V
21cardid 8414 . . . . . . . 8  |-  ( card `  ( B  ^m  ( aleph `  A ) ) )  ~~  ( B  ^m  ( aleph `  A
) )
32ensymi 7149 . . . . . . 7  |-  ( B  ^m  ( aleph `  A
) )  ~~  ( card `  ( B  ^m  ( aleph `  A )
) )
4 fvex 5734 . . . . . . . . . . . . . 14  |-  ( aleph `  A )  e.  _V
54canth2 7252 . . . . . . . . . . . . 13  |-  ( aleph `  A )  ~<  ~P ( aleph `  A )
64pw2en 7207 . . . . . . . . . . . . 13  |-  ~P ( aleph `  A )  ~~  ( 2o  ^m  ( aleph `  A ) )
7 sdomentr 7233 . . . . . . . . . . . . 13  |-  ( ( ( aleph `  A )  ~<  ~P ( aleph `  A
)  /\  ~P ( aleph `  A )  ~~  ( 2o  ^m  ( aleph `  A ) ) )  ->  ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A
) ) )
85, 6, 7mp2an 654 . . . . . . . . . . . 12  |-  ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A
) )
9 mapdom1 7264 . . . . . . . . . . . 12  |-  ( 2o  ~<_  B  ->  ( 2o  ^m  ( aleph `  A )
)  ~<_  ( B  ^m  ( aleph `  A )
) )
10 sdomdomtr 7232 . . . . . . . . . . . 12  |-  ( ( ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A ) )  /\  ( 2o  ^m  ( aleph `  A )
)  ~<_  ( B  ^m  ( aleph `  A )
) )  ->  ( aleph `  A )  ~< 
( B  ^m  ( aleph `  A ) ) )
118, 9, 10sylancr 645 . . . . . . . . . . 11  |-  ( 2o  ~<_  B  ->  ( aleph `  A )  ~<  ( B  ^m  ( aleph `  A
) ) )
12 ficard 8432 . . . . . . . . . . . . . . . . 17  |-  ( ( B  ^m  ( aleph `  A ) )  e. 
_V  ->  ( ( B  ^m  ( aleph `  A
) )  e.  Fin  <->  ( card `  ( B  ^m  ( aleph `  A )
) )  e.  om ) )
131, 12ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( ( B  ^m  ( aleph `  A ) )  e. 
Fin 
<->  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om )
14 isfinite 7599 . . . . . . . . . . . . . . . . 17  |-  ( ( B  ^m  ( aleph `  A ) )  e. 
Fin 
<->  ( B  ^m  ( aleph `  A ) ) 
~<  om )
15 sdomdom 7127 . . . . . . . . . . . . . . . . 17  |-  ( ( B  ^m  ( aleph `  A ) )  ~<  om  ->  ( B  ^m  ( aleph `  A )
)  ~<_  om )
1614, 15sylbi 188 . . . . . . . . . . . . . . . 16  |-  ( ( B  ^m  ( aleph `  A ) )  e. 
Fin  ->  ( B  ^m  ( aleph `  A )
)  ~<_  om )
1713, 16sylbir 205 . . . . . . . . . . . . . . 15  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  e.  om  ->  ( B  ^m  ( aleph `  A ) )  ~<_  om )
18 alephgeom 7955 . . . . . . . . . . . . . . . 16  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
19 alephon 7942 . . . . . . . . . . . . . . . . 17  |-  ( aleph `  A )  e.  On
20 ssdomg 7145 . . . . . . . . . . . . . . . . 17  |-  ( (
aleph `  A )  e.  On  ->  ( om  C_  ( aleph `  A )  ->  om  ~<_  ( aleph `  A
) ) )
2119, 20ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( om  C_  ( aleph `  A )  ->  om  ~<_  ( aleph `  A
) )
2218, 21sylbi 188 . . . . . . . . . . . . . . 15  |-  ( A  e.  On  ->  om  ~<_  ( aleph `  A ) )
23 domtr 7152 . . . . . . . . . . . . . . 15  |-  ( ( ( B  ^m  ( aleph `  A ) )  ~<_  om  /\  om  ~<_  ( aleph `  A ) )  -> 
( B  ^m  ( aleph `  A ) )  ~<_  ( aleph `  A )
)
2417, 22, 23syl2an 464 . . . . . . . . . . . . . 14  |-  ( ( ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om  /\  A  e.  On )  ->  ( B  ^m  ( aleph `  A
) )  ~<_  ( aleph `  A ) )
25 domnsym 7225 . . . . . . . . . . . . . 14  |-  ( ( B  ^m  ( aleph `  A ) )  ~<_  (
aleph `  A )  ->  -.  ( aleph `  A )  ~<  ( B  ^m  ( aleph `  A ) ) )
2624, 25syl 16 . . . . . . . . . . . . 13  |-  ( ( ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om  /\  A  e.  On )  ->  -.  ( aleph `  A )  ~< 
( B  ^m  ( aleph `  A ) ) )
2726expcom 425 . . . . . . . . . . . 12  |-  ( A  e.  On  ->  (
( card `  ( B  ^m  ( aleph `  A )
) )  e.  om  ->  -.  ( aleph `  A
)  ~<  ( B  ^m  ( aleph `  A )
) ) )
2827con2d 109 . . . . . . . . . . 11  |-  ( A  e.  On  ->  (
( aleph `  A )  ~<  ( B  ^m  ( aleph `  A ) )  ->  -.  ( card `  ( B  ^m  ( aleph `  A ) ) )  e.  om )
)
29 cardidm 7838 . . . . . . . . . . . 12  |-  ( card `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )
30 iscard3 7966 . . . . . . . . . . . . 13  |-  ( (
card `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  =  (
card `  ( B  ^m  ( aleph `  A )
) )  <->  ( card `  ( B  ^m  ( aleph `  A ) ) )  e.  ( om  u.  ran  aleph ) )
31 elun 3480 . . . . . . . . . . . . 13  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  e.  ( om  u.  ran  aleph )  <->  ( ( card `  ( B  ^m  ( aleph `  A )
) )  e.  om  \/  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
ran  aleph ) )
32 df-or 360 . . . . . . . . . . . . 13  |-  ( ( ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om  \/  ( card `  ( B  ^m  ( aleph `  A ) ) )  e.  ran  aleph )  <->  ( -.  ( card `  ( B  ^m  ( aleph `  A )
) )  e.  om  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
ran  aleph ) )
3330, 31, 323bitri 263 . . . . . . . . . . . 12  |-  ( (
card `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  =  (
card `  ( B  ^m  ( aleph `  A )
) )  <->  ( -.  ( card `  ( B  ^m  ( aleph `  A )
) )  e.  om  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
ran  aleph ) )
3429, 33mpbi 200 . . . . . . . . . . 11  |-  ( -.  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
ran  aleph )
3511, 28, 34syl56 32 . . . . . . . . . 10  |-  ( A  e.  On  ->  ( 2o 
~<_  B  ->  ( card `  ( B  ^m  ( aleph `  A ) ) )  e.  ran  aleph ) )
36 alephfnon 7938 . . . . . . . . . . 11  |-  aleph  Fn  On
37 fvelrnb 5766 . . . . . . . . . . 11  |-  ( aleph  Fn  On  ->  ( ( card `  ( B  ^m  ( aleph `  A )
) )  e.  ran  aleph  <->  E. x  e.  On  ( aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )
3836, 37ax-mp 8 . . . . . . . . . 10  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  e.  ran  aleph  <->  E. x  e.  On  ( aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) ) )
3935, 38syl6ib 218 . . . . . . . . 9  |-  ( A  e.  On  ->  ( 2o 
~<_  B  ->  E. x  e.  On  ( aleph `  x
)  =  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )
40 eqid 2435 . . . . . . . . . . . 12  |-  ( y  e.  ( cf `  ( aleph `  x ) ) 
|->  (har `  ( z `  y ) ) )  =  ( y  e.  ( cf `  ( aleph `  x ) ) 
|->  (har `  ( z `  y ) ) )
4140pwcfsdom 8450 . . . . . . . . . . 11  |-  ( aleph `  x )  ~<  (
( aleph `  x )  ^m  ( cf `  ( aleph `  x ) ) )
42 id 20 . . . . . . . . . . . 12  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) ) )
43 fveq2 5720 . . . . . . . . . . . . 13  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( cf `  ( aleph `  x ) )  =  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )
4442, 43oveq12d 6091 . . . . . . . . . . . 12  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( ( aleph `  x
)  ^m  ( cf `  ( aleph `  x )
) )  =  ( ( card `  ( B  ^m  ( aleph `  A
) ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) ) )
4542, 44breq12d 4217 . . . . . . . . . . 11  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( ( aleph `  x
)  ~<  ( ( aleph `  x )  ^m  ( cf `  ( aleph `  x
) ) )  <->  ( card `  ( B  ^m  ( aleph `  A ) ) )  ~<  ( ( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
4641, 45mpbii 203 . . . . . . . . . 10  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( card `  ( B  ^m  ( aleph `  A )
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
4746rexlimivw 2818 . . . . . . . . 9  |-  ( E. x  e.  On  ( aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( card `  ( B  ^m  ( aleph `  A )
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
4839, 47syl6 31 . . . . . . . 8  |-  ( A  e.  On  ->  ( 2o 
~<_  B  ->  ( card `  ( B  ^m  ( aleph `  A ) ) )  ~<  ( ( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
4948imp 419 . . . . . . 7  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  ( card `  ( B  ^m  ( aleph `  A )
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
50 ensdomtr 7235 . . . . . . 7  |-  ( ( ( B  ^m  ( aleph `  A ) ) 
~~  ( card `  ( B  ^m  ( aleph `  A
) ) )  /\  ( card `  ( B  ^m  ( aleph `  A )
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )  ->  ( B  ^m  ( aleph `  A
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
513, 49, 50sylancr 645 . . . . . 6  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  ( B  ^m  ( aleph `  A
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
52 fvex 5734 . . . . . . . . 9  |-  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  e.  _V
5352enref 7132 . . . . . . . 8  |-  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) 
~~  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )
54 mapen 7263 . . . . . . . 8  |-  ( ( ( card `  ( B  ^m  ( aleph `  A
) ) )  ~~  ( B  ^m  ( aleph `  A ) )  /\  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~~  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  -> 
( ( card `  ( B  ^m  ( aleph `  A
) ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  ~~  ( ( B  ^m  ( aleph `  A )
)  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
552, 53, 54mp2an 654 . . . . . . 7  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~~  ( ( B  ^m  ( aleph `  A ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )
56 cfpwsdom.1 . . . . . . . 8  |-  B  e. 
_V
57 mapxpen 7265 . . . . . . . 8  |-  ( ( B  e.  _V  /\  ( aleph `  A )  e.  On  /\  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  e.  _V )  -> 
( ( B  ^m  ( aleph `  A )
)  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~~  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
5856, 19, 52, 57mp3an 1279 . . . . . . 7  |-  ( ( B  ^m  ( aleph `  A ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  ~~  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )
5955, 58entri 7153 . . . . . 6  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~~  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
60 sdomentr 7233 . . . . . 6  |-  ( ( ( B  ^m  ( aleph `  A ) ) 
~<  ( ( card `  ( B  ^m  ( aleph `  A
) ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  /\  ( ( card `  ( B  ^m  ( aleph `  A
) ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  ~~  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) ) )  ->  ( B  ^m  ( aleph `  A
) )  ~<  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
6151, 59, 60sylancl 644 . . . . 5  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  ( B  ^m  ( aleph `  A
) )  ~<  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
624xpdom2 7195 . . . . . . . . . 10  |-  ( ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  ~<_  ( aleph `  A )  ->  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )  ~<_  ( ( aleph `  A
)  X.  ( aleph `  A ) ) )
6318biimpi 187 . . . . . . . . . . 11  |-  ( A  e.  On  ->  om  C_  ( aleph `  A ) )
64 infxpen 7888 . . . . . . . . . . 11  |-  ( ( ( aleph `  A )  e.  On  /\  om  C_  ( aleph `  A ) )  ->  ( ( aleph `  A )  X.  ( aleph `  A ) ) 
~~  ( aleph `  A
) )
6519, 63, 64sylancr 645 . . . . . . . . . 10  |-  ( A  e.  On  ->  (
( aleph `  A )  X.  ( aleph `  A )
)  ~~  ( aleph `  A ) )
66 domentr 7158 . . . . . . . . . 10  |-  ( ( ( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~<_  ( ( aleph `  A )  X.  ( aleph `  A ) )  /\  ( ( aleph `  A )  X.  ( aleph `  A ) ) 
~~  ( aleph `  A
) )  ->  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )  ~<_  ( aleph `  A )
)
6762, 65, 66syl2an 464 . . . . . . . . 9  |-  ( ( ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A )  /\  A  e.  On )  ->  ( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~<_  ( aleph `  A
) )
68 nsuceq0 4653 . . . . . . . . . . 11  |-  suc  1o  =/=  (/)
69 dom0 7227 . . . . . . . . . . 11  |-  ( suc 
1o  ~<_  (/)  <->  suc  1o  =  (/) )
7068, 69nemtbir 2686 . . . . . . . . . 10  |-  -.  suc  1o  ~<_  (/)
71 df-2o 6717 . . . . . . . . . . . . . 14  |-  2o  =  suc  1o
7271breq1i 4211 . . . . . . . . . . . . 13  |-  ( 2o  ~<_  B  <->  suc  1o  ~<_  B )
73 breq2 4208 . . . . . . . . . . . . 13  |-  ( B  =  (/)  ->  ( suc 
1o  ~<_  B  <->  suc  1o  ~<_  (/) ) )
7472, 73syl5bb 249 . . . . . . . . . . . 12  |-  ( B  =  (/)  ->  ( 2o  ~<_  B  <->  suc  1o  ~<_  (/) ) )
7574biimpcd 216 . . . . . . . . . . 11  |-  ( 2o  ~<_  B  ->  ( B  =  (/)  ->  suc  1o  ~<_  (/) ) )
7675adantld 454 . . . . . . . . . 10  |-  ( 2o  ~<_  B  ->  ( (
( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  =  (/)  /\  B  =  (/) )  ->  suc  1o  ~<_  (/) ) )
7770, 76mtoi 171 . . . . . . . . 9  |-  ( 2o  ~<_  B  ->  -.  (
( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  =  (/)  /\  B  =  (/) ) )
78 mapdom2 7270 . . . . . . . . 9  |-  ( ( ( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~<_  ( aleph `  A
)  /\  -.  (
( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  =  (/)  /\  B  =  (/) ) )  -> 
( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )  ~<_  ( B  ^m  ( aleph `  A )
) )
7967, 77, 78syl2an 464 . . . . . . . 8  |-  ( ( ( ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A )  /\  A  e.  On )  /\  2o  ~<_  B )  -> 
( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )  ~<_  ( B  ^m  ( aleph `  A )
) )
80 domnsym 7225 . . . . . . . 8  |-  ( ( B  ^m  ( (
aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )  ~<_  ( B  ^m  ( aleph `  A )
)  ->  -.  ( B  ^m  ( aleph `  A
) )  ~<  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
8179, 80syl 16 . . . . . . 7  |-  ( ( ( ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A )  /\  A  e.  On )  /\  2o  ~<_  B )  ->  -.  ( B  ^m  ( aleph `  A ) ) 
~<  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) ) )
8281expl 602 . . . . . 6  |-  ( ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  ~<_  ( aleph `  A )  ->  (
( A  e.  On  /\  2o  ~<_  B )  ->  -.  ( B  ^m  ( aleph `  A ) ) 
~<  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) ) ) )
8382com12 29 . . . . 5  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  (
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A )  ->  -.  ( B  ^m  ( aleph `  A ) ) 
~<  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) ) ) )
8461, 83mt2d 111 . . . 4  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  -.  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  ~<_  ( aleph `  A ) )
85 domtri 8423 . . . . . 6  |-  ( ( ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  e. 
_V  /\  ( aleph `  A )  e.  _V )  ->  ( ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  ~<_  ( aleph `  A )  <->  -.  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )
8652, 4, 85mp2an 654 . . . . 5  |-  ( ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  ~<_  ( aleph `  A )  <->  -.  ( aleph `  A )  ~< 
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )
8786biimpri 198 . . . 4  |-  ( -.  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  -> 
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A ) )
8884, 87nsyl2 121 . . 3  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  ( aleph `  A )  ~< 
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )
8988ex 424 . 2  |-  ( A  e.  On  ->  ( 2o 
~<_  B  ->  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
90 fndm 5536 . . . . . 6  |-  ( aleph  Fn  On  ->  dom  aleph  =  On )
9136, 90ax-mp 8 . . . . 5  |-  dom  aleph  =  On
9291eleq2i 2499 . . . 4  |-  ( A  e.  dom  aleph  <->  A  e.  On )
93 ndmfv 5747 . . . 4  |-  ( -.  A  e.  dom  aleph  ->  ( aleph `  A )  =  (/) )
9492, 93sylnbir 299 . . 3  |-  ( -.  A  e.  On  ->  (
aleph `  A )  =  (/) )
95 1n0 6731 . . . . . 6  |-  1o  =/=  (/)
96 1onn 6874 . . . . . . . 8  |-  1o  e.  om
9796elexi 2957 . . . . . . 7  |-  1o  e.  _V
98970sdom 7230 . . . . . 6  |-  ( (/)  ~<  1o 
<->  1o  =/=  (/) )
9995, 98mpbir 201 . . . . 5  |-  (/)  ~<  1o
100 id 20 . . . . . 6  |-  ( (
aleph `  A )  =  (/)  ->  ( aleph `  A
)  =  (/) )
101 oveq2 6081 . . . . . . . . . . 11  |-  ( (
aleph `  A )  =  (/)  ->  ( B  ^m  ( aleph `  A )
)  =  ( B  ^m  (/) ) )
102 map0e 7043 . . . . . . . . . . . 12  |-  ( B  e.  _V  ->  ( B  ^m  (/) )  =  1o )
10356, 102ax-mp 8 . . . . . . . . . . 11  |-  ( B  ^m  (/) )  =  1o
104101, 103syl6eq 2483 . . . . . . . . . 10  |-  ( (
aleph `  A )  =  (/)  ->  ( B  ^m  ( aleph `  A )
)  =  1o )
105104fveq2d 5724 . . . . . . . . 9  |-  ( (
aleph `  A )  =  (/)  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  =  ( card `  1o ) )
106 cardnn 7842 . . . . . . . . . 10  |-  ( 1o  e.  om  ->  ( card `  1o )  =  1o )
10796, 106ax-mp 8 . . . . . . . . 9  |-  ( card `  1o )  =  1o
108105, 107syl6eq 2483 . . . . . . . 8  |-  ( (
aleph `  A )  =  (/)  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  =  1o )
109108fveq2d 5724 . . . . . . 7  |-  ( (
aleph `  A )  =  (/)  ->  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  =  ( cf `  1o ) )
110 df-1o 6716 . . . . . . . . 9  |-  1o  =  suc  (/)
111110fveq2i 5723 . . . . . . . 8  |-  ( cf `  1o )  =  ( cf `  suc  (/) )
112 0elon 4626 . . . . . . . . 9  |-  (/)  e.  On
113 cfsuc 8129 . . . . . . . . 9  |-  ( (/)  e.  On  ->  ( cf ` 
suc  (/) )  =  1o )
114112, 113ax-mp 8 . . . . . . . 8  |-  ( cf ` 
suc  (/) )  =  1o
115111, 114eqtri 2455 . . . . . . 7  |-  ( cf `  1o )  =  1o
116109, 115syl6eq 2483 . . . . . 6  |-  ( (
aleph `  A )  =  (/)  ->  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  =  1o )
117100, 116breq12d 4217 . . . . 5  |-  ( (
aleph `  A )  =  (/)  ->  ( ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  <->  (/) 
~<  1o ) )
11899, 117mpbiri 225 . . . 4  |-  ( (
aleph `  A )  =  (/)  ->  ( aleph `  A
)  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )
119118a1d 23 . . 3  |-  ( (
aleph `  A )  =  (/)  ->  ( 2o  ~<_  B  -> 
( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )
12094, 119syl 16 . 2  |-  ( -.  A  e.  On  ->  ( 2o  ~<_  B  ->  ( aleph `  A )  ~< 
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )
12189, 120pm2.61i 158 1  |-  ( 2o  ~<_  B  ->  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   _Vcvv 2948    u. cun 3310    C_ wss 3312   (/)c0 3620   ~Pcpw 3791   class class class wbr 4204    e. cmpt 4258   Oncon0 4573   suc csuc 4575   omcom 4837    X. cxp 4868   dom cdm 4870   ran crn 4871    Fn wfn 5441   ` cfv 5446  (class class class)co 6073   1oc1o 6709   2oc2o 6710    ^m cmap 7010    ~~ cen 7098    ~<_ cdom 7099    ~< csdm 7100   Fincfn 7101  harchar 7516   cardccrd 7814   alephcale 7815   cfccf 7816
This theorem is referenced by:  alephom  8452
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-ac2 8335
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-smo 6600  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-oi 7471  df-har 7518  df-card 7818  df-aleph 7819  df-cf 7820  df-acn 7821  df-ac 7989
  Copyright terms: Public domain W3C validator