MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfpwsdom Unicode version

Theorem cfpwsdom 8086
Description: A corollary of Konig's Theorem konigth 8071. Theorem 11.29 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.)
Hypothesis
Ref Expression
cfpwsdom.1  |-  B  e. 
_V
Assertion
Ref Expression
cfpwsdom  |-  ( 2o  ~<_  B  ->  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )

Proof of Theorem cfpwsdom
StepHypRef Expression
1 ovex 5735 . . . . . . . . 9  |-  ( B  ^m  ( aleph `  A
) )  e.  _V
21cardid 8053 . . . . . . . 8  |-  ( card `  ( B  ^m  ( aleph `  A ) ) )  ~~  ( B  ^m  ( aleph `  A
) )
32ensymi 6797 . . . . . . 7  |-  ( B  ^m  ( aleph `  A
) )  ~~  ( card `  ( B  ^m  ( aleph `  A )
) )
4 fvex 5391 . . . . . . . . . . . . . 14  |-  ( aleph `  A )  e.  _V
54canth2 6899 . . . . . . . . . . . . 13  |-  ( aleph `  A )  ~<  ~P ( aleph `  A )
64pw2en 6854 . . . . . . . . . . . . 13  |-  ~P ( aleph `  A )  ~~  ( 2o  ^m  ( aleph `  A ) )
7 sdomentr 6880 . . . . . . . . . . . . 13  |-  ( ( ( aleph `  A )  ~<  ~P ( aleph `  A
)  /\  ~P ( aleph `  A )  ~~  ( 2o  ^m  ( aleph `  A ) ) )  ->  ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A
) ) )
85, 6, 7mp2an 656 . . . . . . . . . . . 12  |-  ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A
) )
9 mapdom1 6911 . . . . . . . . . . . 12  |-  ( 2o  ~<_  B  ->  ( 2o  ^m  ( aleph `  A )
)  ~<_  ( B  ^m  ( aleph `  A )
) )
10 sdomdomtr 6879 . . . . . . . . . . . 12  |-  ( ( ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A ) )  /\  ( 2o  ^m  ( aleph `  A )
)  ~<_  ( B  ^m  ( aleph `  A )
) )  ->  ( aleph `  A )  ~< 
( B  ^m  ( aleph `  A ) ) )
118, 9, 10sylancr 647 . . . . . . . . . . 11  |-  ( 2o  ~<_  B  ->  ( aleph `  A )  ~<  ( B  ^m  ( aleph `  A
) ) )
12 ficard 8069 . . . . . . . . . . . . . . . . 17  |-  ( ( B  ^m  ( aleph `  A ) )  e. 
_V  ->  ( ( B  ^m  ( aleph `  A
) )  e.  Fin  <->  ( card `  ( B  ^m  ( aleph `  A )
) )  e.  om ) )
131, 12ax-mp 10 . . . . . . . . . . . . . . . 16  |-  ( ( B  ^m  ( aleph `  A ) )  e. 
Fin 
<->  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om )
14 isfinite 7237 . . . . . . . . . . . . . . . . 17  |-  ( ( B  ^m  ( aleph `  A ) )  e. 
Fin 
<->  ( B  ^m  ( aleph `  A ) ) 
~<  om )
15 sdomdom 6775 . . . . . . . . . . . . . . . . 17  |-  ( ( B  ^m  ( aleph `  A ) )  ~<  om  ->  ( B  ^m  ( aleph `  A )
)  ~<_  om )
1614, 15sylbi 189 . . . . . . . . . . . . . . . 16  |-  ( ( B  ^m  ( aleph `  A ) )  e. 
Fin  ->  ( B  ^m  ( aleph `  A )
)  ~<_  om )
1713, 16sylbir 206 . . . . . . . . . . . . . . 15  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  e.  om  ->  ( B  ^m  ( aleph `  A ) )  ~<_  om )
18 alephgeom 7593 . . . . . . . . . . . . . . . 16  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
19 alephon 7580 . . . . . . . . . . . . . . . . 17  |-  ( aleph `  A )  e.  On
20 ssdomg 6793 . . . . . . . . . . . . . . . . 17  |-  ( (
aleph `  A )  e.  On  ->  ( om  C_  ( aleph `  A )  ->  om  ~<_  ( aleph `  A
) ) )
2119, 20ax-mp 10 . . . . . . . . . . . . . . . 16  |-  ( om  C_  ( aleph `  A )  ->  om  ~<_  ( aleph `  A
) )
2218, 21sylbi 189 . . . . . . . . . . . . . . 15  |-  ( A  e.  On  ->  om  ~<_  ( aleph `  A ) )
23 domtr 6799 . . . . . . . . . . . . . . 15  |-  ( ( ( B  ^m  ( aleph `  A ) )  ~<_  om  /\  om  ~<_  ( aleph `  A ) )  -> 
( B  ^m  ( aleph `  A ) )  ~<_  ( aleph `  A )
)
2417, 22, 23syl2an 465 . . . . . . . . . . . . . 14  |-  ( ( ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om  /\  A  e.  On )  ->  ( B  ^m  ( aleph `  A
) )  ~<_  ( aleph `  A ) )
25 domnsym 6872 . . . . . . . . . . . . . 14  |-  ( ( B  ^m  ( aleph `  A ) )  ~<_  (
aleph `  A )  ->  -.  ( aleph `  A )  ~<  ( B  ^m  ( aleph `  A ) ) )
2624, 25syl 17 . . . . . . . . . . . . 13  |-  ( ( ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om  /\  A  e.  On )  ->  -.  ( aleph `  A )  ~< 
( B  ^m  ( aleph `  A ) ) )
2726expcom 426 . . . . . . . . . . . 12  |-  ( A  e.  On  ->  (
( card `  ( B  ^m  ( aleph `  A )
) )  e.  om  ->  -.  ( aleph `  A
)  ~<  ( B  ^m  ( aleph `  A )
) ) )
2827con2d 109 . . . . . . . . . . 11  |-  ( A  e.  On  ->  (
( aleph `  A )  ~<  ( B  ^m  ( aleph `  A ) )  ->  -.  ( card `  ( B  ^m  ( aleph `  A ) ) )  e.  om )
)
29 cardidm 7476 . . . . . . . . . . . 12  |-  ( card `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )
30 iscard3 7604 . . . . . . . . . . . . 13  |-  ( (
card `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  =  (
card `  ( B  ^m  ( aleph `  A )
) )  <->  ( card `  ( B  ^m  ( aleph `  A ) ) )  e.  ( om  u.  ran  aleph ) )
31 elun 3226 . . . . . . . . . . . . 13  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  e.  ( om  u.  ran  aleph )  <->  ( ( card `  ( B  ^m  ( aleph `  A )
) )  e.  om  \/  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
ran  aleph ) )
32 df-or 361 . . . . . . . . . . . . 13  |-  ( ( ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om  \/  ( card `  ( B  ^m  ( aleph `  A ) ) )  e.  ran  aleph )  <->  ( -.  ( card `  ( B  ^m  ( aleph `  A )
) )  e.  om  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
ran  aleph ) )
3330, 31, 323bitri 264 . . . . . . . . . . . 12  |-  ( (
card `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  =  (
card `  ( B  ^m  ( aleph `  A )
) )  <->  ( -.  ( card `  ( B  ^m  ( aleph `  A )
) )  e.  om  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
ran  aleph ) )
3429, 33mpbi 201 . . . . . . . . . . 11  |-  ( -.  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
ran  aleph )
3511, 28, 34syl56 32 . . . . . . . . . 10  |-  ( A  e.  On  ->  ( 2o 
~<_  B  ->  ( card `  ( B  ^m  ( aleph `  A ) ) )  e.  ran  aleph ) )
36 alephfnon 7576 . . . . . . . . . . 11  |-  aleph  Fn  On
37 fvelrnb 5422 . . . . . . . . . . 11  |-  ( aleph  Fn  On  ->  ( ( card `  ( B  ^m  ( aleph `  A )
) )  e.  ran  aleph  <->  E. x  e.  On  ( aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )
3836, 37ax-mp 10 . . . . . . . . . 10  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  e.  ran  aleph  <->  E. x  e.  On  ( aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) ) )
3935, 38syl6ib 219 . . . . . . . . 9  |-  ( A  e.  On  ->  ( 2o 
~<_  B  ->  E. x  e.  On  ( aleph `  x
)  =  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )
40 eqid 2253 . . . . . . . . . . . 12  |-  ( y  e.  ( cf `  ( aleph `  x ) ) 
|->  (har `  ( z `  y ) ) )  =  ( y  e.  ( cf `  ( aleph `  x ) ) 
|->  (har `  ( z `  y ) ) )
4140pwcfsdom 8085 . . . . . . . . . . 11  |-  ( aleph `  x )  ~<  (
( aleph `  x )  ^m  ( cf `  ( aleph `  x ) ) )
42 id 21 . . . . . . . . . . . 12  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) ) )
43 fveq2 5377 . . . . . . . . . . . . 13  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( cf `  ( aleph `  x ) )  =  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )
4442, 43oveq12d 5728 . . . . . . . . . . . 12  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( ( aleph `  x
)  ^m  ( cf `  ( aleph `  x )
) )  =  ( ( card `  ( B  ^m  ( aleph `  A
) ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) ) )
4542, 44breq12d 3933 . . . . . . . . . . 11  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( ( aleph `  x
)  ~<  ( ( aleph `  x )  ^m  ( cf `  ( aleph `  x
) ) )  <->  ( card `  ( B  ^m  ( aleph `  A ) ) )  ~<  ( ( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
4641, 45mpbii 204 . . . . . . . . . 10  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( card `  ( B  ^m  ( aleph `  A )
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
4746rexlimivw 2625 . . . . . . . . 9  |-  ( E. x  e.  On  ( aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( card `  ( B  ^m  ( aleph `  A )
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
4839, 47syl6 31 . . . . . . . 8  |-  ( A  e.  On  ->  ( 2o 
~<_  B  ->  ( card `  ( B  ^m  ( aleph `  A ) ) )  ~<  ( ( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
4948imp 420 . . . . . . 7  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  ( card `  ( B  ^m  ( aleph `  A )
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
50 ensdomtr 6882 . . . . . . 7  |-  ( ( ( B  ^m  ( aleph `  A ) ) 
~~  ( card `  ( B  ^m  ( aleph `  A
) ) )  /\  ( card `  ( B  ^m  ( aleph `  A )
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )  ->  ( B  ^m  ( aleph `  A
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
513, 49, 50sylancr 647 . . . . . 6  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  ( B  ^m  ( aleph `  A
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
52 fvex 5391 . . . . . . . . 9  |-  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  e.  _V
5352enref 6780 . . . . . . . 8  |-  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) 
~~  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )
54 mapen 6910 . . . . . . . 8  |-  ( ( ( card `  ( B  ^m  ( aleph `  A
) ) )  ~~  ( B  ^m  ( aleph `  A ) )  /\  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~~  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  -> 
( ( card `  ( B  ^m  ( aleph `  A
) ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  ~~  ( ( B  ^m  ( aleph `  A )
)  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
552, 53, 54mp2an 656 . . . . . . 7  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~~  ( ( B  ^m  ( aleph `  A ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )
56 cfpwsdom.1 . . . . . . . 8  |-  B  e. 
_V
57 mapxpen 6912 . . . . . . . 8  |-  ( ( B  e.  _V  /\  ( aleph `  A )  e.  On  /\  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  e.  _V )  -> 
( ( B  ^m  ( aleph `  A )
)  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~~  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
5856, 19, 52, 57mp3an 1282 . . . . . . 7  |-  ( ( B  ^m  ( aleph `  A ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  ~~  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )
5955, 58entri 6800 . . . . . 6  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~~  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
60 sdomentr 6880 . . . . . 6  |-  ( ( ( B  ^m  ( aleph `  A ) ) 
~<  ( ( card `  ( B  ^m  ( aleph `  A
) ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  /\  ( ( card `  ( B  ^m  ( aleph `  A
) ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  ~~  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) ) )  ->  ( B  ^m  ( aleph `  A
) )  ~<  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
6151, 59, 60sylancl 646 . . . . 5  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  ( B  ^m  ( aleph `  A
) )  ~<  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
624xpdom2 6842 . . . . . . . . . 10  |-  ( ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  ~<_  ( aleph `  A )  ->  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )  ~<_  ( ( aleph `  A
)  X.  ( aleph `  A ) ) )
6318biimpi 188 . . . . . . . . . . 11  |-  ( A  e.  On  ->  om  C_  ( aleph `  A ) )
64 infxpen 7526 . . . . . . . . . . 11  |-  ( ( ( aleph `  A )  e.  On  /\  om  C_  ( aleph `  A ) )  ->  ( ( aleph `  A )  X.  ( aleph `  A ) ) 
~~  ( aleph `  A
) )
6519, 63, 64sylancr 647 . . . . . . . . . 10  |-  ( A  e.  On  ->  (
( aleph `  A )  X.  ( aleph `  A )
)  ~~  ( aleph `  A ) )
66 domentr 6805 . . . . . . . . . 10  |-  ( ( ( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~<_  ( ( aleph `  A )  X.  ( aleph `  A ) )  /\  ( ( aleph `  A )  X.  ( aleph `  A ) ) 
~~  ( aleph `  A
) )  ->  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )  ~<_  ( aleph `  A )
)
6762, 65, 66syl2an 465 . . . . . . . . 9  |-  ( ( ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A )  /\  A  e.  On )  ->  ( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~<_  ( aleph `  A
) )
68 nsuceq0 4365 . . . . . . . . . . 11  |-  suc  1o  =/=  (/)
69 dom0 6874 . . . . . . . . . . 11  |-  ( suc 
1o  ~<_  (/)  <->  suc  1o  =  (/) )
7068, 69nemtbir 2500 . . . . . . . . . 10  |-  -.  suc  1o  ~<_  (/)
71 df-2o 6366 . . . . . . . . . . . . . 14  |-  2o  =  suc  1o
7271breq1i 3927 . . . . . . . . . . . . 13  |-  ( 2o  ~<_  B  <->  suc  1o  ~<_  B )
73 breq2 3924 . . . . . . . . . . . . 13  |-  ( B  =  (/)  ->  ( suc 
1o  ~<_  B  <->  suc  1o  ~<_  (/) ) )
7472, 73syl5bb 250 . . . . . . . . . . . 12  |-  ( B  =  (/)  ->  ( 2o  ~<_  B  <->  suc  1o  ~<_  (/) ) )
7574biimpcd 217 . . . . . . . . . . 11  |-  ( 2o  ~<_  B  ->  ( B  =  (/)  ->  suc  1o  ~<_  (/) ) )
7675adantld 455 . . . . . . . . . 10  |-  ( 2o  ~<_  B  ->  ( (
( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  =  (/)  /\  B  =  (/) )  ->  suc  1o  ~<_  (/) ) )
7770, 76mtoi 171 . . . . . . . . 9  |-  ( 2o  ~<_  B  ->  -.  (
( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  =  (/)  /\  B  =  (/) ) )
78 mapdom2 6917 . . . . . . . . 9  |-  ( ( ( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~<_  ( aleph `  A
)  /\  -.  (
( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  =  (/)  /\  B  =  (/) ) )  -> 
( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )  ~<_  ( B  ^m  ( aleph `  A )
) )
7967, 77, 78syl2an 465 . . . . . . . 8  |-  ( ( ( ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A )  /\  A  e.  On )  /\  2o  ~<_  B )  -> 
( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )  ~<_  ( B  ^m  ( aleph `  A )
) )
80 domnsym 6872 . . . . . . . 8  |-  ( ( B  ^m  ( (
aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )  ~<_  ( B  ^m  ( aleph `  A )
)  ->  -.  ( B  ^m  ( aleph `  A
) )  ~<  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
8179, 80syl 17 . . . . . . 7  |-  ( ( ( ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A )  /\  A  e.  On )  /\  2o  ~<_  B )  ->  -.  ( B  ^m  ( aleph `  A ) ) 
~<  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) ) )
8281expl 604 . . . . . 6  |-  ( ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  ~<_  ( aleph `  A )  ->  (
( A  e.  On  /\  2o  ~<_  B )  ->  -.  ( B  ^m  ( aleph `  A ) ) 
~<  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) ) ) )
8382com12 29 . . . . 5  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  (
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A )  ->  -.  ( B  ^m  ( aleph `  A ) ) 
~<  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) ) ) )
8461, 83mt2d 111 . . . 4  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  -.  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  ~<_  ( aleph `  A ) )
85 domtri 8060 . . . . . 6  |-  ( ( ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  e. 
_V  /\  ( aleph `  A )  e.  _V )  ->  ( ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  ~<_  ( aleph `  A )  <->  -.  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )
8652, 4, 85mp2an 656 . . . . 5  |-  ( ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  ~<_  ( aleph `  A )  <->  -.  ( aleph `  A )  ~< 
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )
8786biimpri 199 . . . 4  |-  ( -.  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  -> 
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A ) )
8884, 87nsyl2 121 . . 3  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  ( aleph `  A )  ~< 
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )
8988ex 425 . 2  |-  ( A  e.  On  ->  ( 2o 
~<_  B  ->  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
90 fndm 5200 . . . . . 6  |-  ( aleph  Fn  On  ->  dom  aleph  =  On )
9136, 90ax-mp 10 . . . . 5  |-  dom  aleph  =  On
9291eleq2i 2317 . . . 4  |-  ( A  e.  dom  aleph  <->  A  e.  On )
93 ndmfv 5405 . . . 4  |-  ( -.  A  e.  dom  aleph  ->  ( aleph `  A )  =  (/) )
9492, 93sylnbir 300 . . 3  |-  ( -.  A  e.  On  ->  (
aleph `  A )  =  (/) )
95 1n0 6380 . . . . . 6  |-  1o  =/=  (/)
96 1onn 6523 . . . . . . . 8  |-  1o  e.  om
9796elexi 2736 . . . . . . 7  |-  1o  e.  _V
98970sdom 6877 . . . . . 6  |-  ( (/)  ~<  1o 
<->  1o  =/=  (/) )
9995, 98mpbir 202 . . . . 5  |-  (/)  ~<  1o
100 id 21 . . . . . 6  |-  ( (
aleph `  A )  =  (/)  ->  ( aleph `  A
)  =  (/) )
101 oveq2 5718 . . . . . . . . . . 11  |-  ( (
aleph `  A )  =  (/)  ->  ( B  ^m  ( aleph `  A )
)  =  ( B  ^m  (/) ) )
102 map0e 6691 . . . . . . . . . . . 12  |-  ( B  e.  _V  ->  ( B  ^m  (/) )  =  1o )
10356, 102ax-mp 10 . . . . . . . . . . 11  |-  ( B  ^m  (/) )  =  1o
104101, 103syl6eq 2301 . . . . . . . . . 10  |-  ( (
aleph `  A )  =  (/)  ->  ( B  ^m  ( aleph `  A )
)  =  1o )
105104fveq2d 5381 . . . . . . . . 9  |-  ( (
aleph `  A )  =  (/)  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  =  ( card `  1o ) )
106 cardnn 7480 . . . . . . . . . 10  |-  ( 1o  e.  om  ->  ( card `  1o )  =  1o )
10796, 106ax-mp 10 . . . . . . . . 9  |-  ( card `  1o )  =  1o
108105, 107syl6eq 2301 . . . . . . . 8  |-  ( (
aleph `  A )  =  (/)  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  =  1o )
109108fveq2d 5381 . . . . . . 7  |-  ( (
aleph `  A )  =  (/)  ->  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  =  ( cf `  1o ) )
110 df-1o 6365 . . . . . . . . 9  |-  1o  =  suc  (/)
111110fveq2i 5380 . . . . . . . 8  |-  ( cf `  1o )  =  ( cf `  suc  (/) )
112 0elon 4338 . . . . . . . . 9  |-  (/)  e.  On
113 cfsuc 7767 . . . . . . . . 9  |-  ( (/)  e.  On  ->  ( cf ` 
suc  (/) )  =  1o )
114112, 113ax-mp 10 . . . . . . . 8  |-  ( cf ` 
suc  (/) )  =  1o
115111, 114eqtri 2273 . . . . . . 7  |-  ( cf `  1o )  =  1o
116109, 115syl6eq 2301 . . . . . 6  |-  ( (
aleph `  A )  =  (/)  ->  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  =  1o )
117100, 116breq12d 3933 . . . . 5  |-  ( (
aleph `  A )  =  (/)  ->  ( ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  <->  (/) 
~<  1o ) )
11899, 117mpbiri 226 . . . 4  |-  ( (
aleph `  A )  =  (/)  ->  ( aleph `  A
)  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )
119118a1d 24 . . 3  |-  ( (
aleph `  A )  =  (/)  ->  ( 2o  ~<_  B  -> 
( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )
12094, 119syl 17 . 2  |-  ( -.  A  e.  On  ->  ( 2o  ~<_  B  ->  ( aleph `  A )  ~< 
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )
12189, 120pm2.61i 158 1  |-  ( 2o  ~<_  B  ->  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   E.wrex 2510   _Vcvv 2727    u. cun 3076    C_ wss 3078   (/)c0 3362   ~Pcpw 3530   class class class wbr 3920    e. cmpt 3974   Oncon0 4285   suc csuc 4287   omcom 4547    X. cxp 4578   dom cdm 4580   ran crn 4581    Fn wfn 4587   ` cfv 4592  (class class class)co 5710   1oc1o 6358   2oc2o 6359    ^m cmap 6658    ~~ cen 6746    ~<_ cdom 6747    ~< csdm 6748   Fincfn 6749  harchar 7154   cardccrd 7452   alephcale 7453   cfccf 7454
This theorem is referenced by:  alephom  8087
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-ac2 7973
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-smo 6249  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-oi 7109  df-har 7156  df-card 7456  df-aleph 7457  df-cf 7458  df-acn 7459  df-ac 7627
  Copyright terms: Public domain W3C validator