MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfpwsdom Unicode version

Theorem cfpwsdom 8222
Description: A corollary of Konig's Theorem konigth 8207. Theorem 11.29 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.)
Hypothesis
Ref Expression
cfpwsdom.1  |-  B  e. 
_V
Assertion
Ref Expression
cfpwsdom  |-  ( 2o  ~<_  B  ->  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )

Proof of Theorem cfpwsdom
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 5899 . . . . . . . . 9  |-  ( B  ^m  ( aleph `  A
) )  e.  _V
21cardid 8185 . . . . . . . 8  |-  ( card `  ( B  ^m  ( aleph `  A ) ) )  ~~  ( B  ^m  ( aleph `  A
) )
32ensymi 6927 . . . . . . 7  |-  ( B  ^m  ( aleph `  A
) )  ~~  ( card `  ( B  ^m  ( aleph `  A )
) )
4 fvex 5555 . . . . . . . . . . . . . 14  |-  ( aleph `  A )  e.  _V
54canth2 7030 . . . . . . . . . . . . 13  |-  ( aleph `  A )  ~<  ~P ( aleph `  A )
64pw2en 6985 . . . . . . . . . . . . 13  |-  ~P ( aleph `  A )  ~~  ( 2o  ^m  ( aleph `  A ) )
7 sdomentr 7011 . . . . . . . . . . . . 13  |-  ( ( ( aleph `  A )  ~<  ~P ( aleph `  A
)  /\  ~P ( aleph `  A )  ~~  ( 2o  ^m  ( aleph `  A ) ) )  ->  ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A
) ) )
85, 6, 7mp2an 653 . . . . . . . . . . . 12  |-  ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A
) )
9 mapdom1 7042 . . . . . . . . . . . 12  |-  ( 2o  ~<_  B  ->  ( 2o  ^m  ( aleph `  A )
)  ~<_  ( B  ^m  ( aleph `  A )
) )
10 sdomdomtr 7010 . . . . . . . . . . . 12  |-  ( ( ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A ) )  /\  ( 2o  ^m  ( aleph `  A )
)  ~<_  ( B  ^m  ( aleph `  A )
) )  ->  ( aleph `  A )  ~< 
( B  ^m  ( aleph `  A ) ) )
118, 9, 10sylancr 644 . . . . . . . . . . 11  |-  ( 2o  ~<_  B  ->  ( aleph `  A )  ~<  ( B  ^m  ( aleph `  A
) ) )
12 ficard 8203 . . . . . . . . . . . . . . . . 17  |-  ( ( B  ^m  ( aleph `  A ) )  e. 
_V  ->  ( ( B  ^m  ( aleph `  A
) )  e.  Fin  <->  ( card `  ( B  ^m  ( aleph `  A )
) )  e.  om ) )
131, 12ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( ( B  ^m  ( aleph `  A ) )  e. 
Fin 
<->  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om )
14 isfinite 7369 . . . . . . . . . . . . . . . . 17  |-  ( ( B  ^m  ( aleph `  A ) )  e. 
Fin 
<->  ( B  ^m  ( aleph `  A ) ) 
~<  om )
15 sdomdom 6905 . . . . . . . . . . . . . . . . 17  |-  ( ( B  ^m  ( aleph `  A ) )  ~<  om  ->  ( B  ^m  ( aleph `  A )
)  ~<_  om )
1614, 15sylbi 187 . . . . . . . . . . . . . . . 16  |-  ( ( B  ^m  ( aleph `  A ) )  e. 
Fin  ->  ( B  ^m  ( aleph `  A )
)  ~<_  om )
1713, 16sylbir 204 . . . . . . . . . . . . . . 15  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  e.  om  ->  ( B  ^m  ( aleph `  A ) )  ~<_  om )
18 alephgeom 7725 . . . . . . . . . . . . . . . 16  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
19 alephon 7712 . . . . . . . . . . . . . . . . 17  |-  ( aleph `  A )  e.  On
20 ssdomg 6923 . . . . . . . . . . . . . . . . 17  |-  ( (
aleph `  A )  e.  On  ->  ( om  C_  ( aleph `  A )  ->  om  ~<_  ( aleph `  A
) ) )
2119, 20ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( om  C_  ( aleph `  A )  ->  om  ~<_  ( aleph `  A
) )
2218, 21sylbi 187 . . . . . . . . . . . . . . 15  |-  ( A  e.  On  ->  om  ~<_  ( aleph `  A ) )
23 domtr 6930 . . . . . . . . . . . . . . 15  |-  ( ( ( B  ^m  ( aleph `  A ) )  ~<_  om  /\  om  ~<_  ( aleph `  A ) )  -> 
( B  ^m  ( aleph `  A ) )  ~<_  ( aleph `  A )
)
2417, 22, 23syl2an 463 . . . . . . . . . . . . . 14  |-  ( ( ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om  /\  A  e.  On )  ->  ( B  ^m  ( aleph `  A
) )  ~<_  ( aleph `  A ) )
25 domnsym 7003 . . . . . . . . . . . . . 14  |-  ( ( B  ^m  ( aleph `  A ) )  ~<_  (
aleph `  A )  ->  -.  ( aleph `  A )  ~<  ( B  ^m  ( aleph `  A ) ) )
2624, 25syl 15 . . . . . . . . . . . . 13  |-  ( ( ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om  /\  A  e.  On )  ->  -.  ( aleph `  A )  ~< 
( B  ^m  ( aleph `  A ) ) )
2726expcom 424 . . . . . . . . . . . 12  |-  ( A  e.  On  ->  (
( card `  ( B  ^m  ( aleph `  A )
) )  e.  om  ->  -.  ( aleph `  A
)  ~<  ( B  ^m  ( aleph `  A )
) ) )
2827con2d 107 . . . . . . . . . . 11  |-  ( A  e.  On  ->  (
( aleph `  A )  ~<  ( B  ^m  ( aleph `  A ) )  ->  -.  ( card `  ( B  ^m  ( aleph `  A ) ) )  e.  om )
)
29 cardidm 7608 . . . . . . . . . . . 12  |-  ( card `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )
30 iscard3 7736 . . . . . . . . . . . . 13  |-  ( (
card `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  =  (
card `  ( B  ^m  ( aleph `  A )
) )  <->  ( card `  ( B  ^m  ( aleph `  A ) ) )  e.  ( om  u.  ran  aleph ) )
31 elun 3329 . . . . . . . . . . . . 13  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  e.  ( om  u.  ran  aleph )  <->  ( ( card `  ( B  ^m  ( aleph `  A )
) )  e.  om  \/  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
ran  aleph ) )
32 df-or 359 . . . . . . . . . . . . 13  |-  ( ( ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om  \/  ( card `  ( B  ^m  ( aleph `  A ) ) )  e.  ran  aleph )  <->  ( -.  ( card `  ( B  ^m  ( aleph `  A )
) )  e.  om  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
ran  aleph ) )
3330, 31, 323bitri 262 . . . . . . . . . . . 12  |-  ( (
card `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  =  (
card `  ( B  ^m  ( aleph `  A )
) )  <->  ( -.  ( card `  ( B  ^m  ( aleph `  A )
) )  e.  om  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
ran  aleph ) )
3429, 33mpbi 199 . . . . . . . . . . 11  |-  ( -.  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
ran  aleph )
3511, 28, 34syl56 30 . . . . . . . . . 10  |-  ( A  e.  On  ->  ( 2o 
~<_  B  ->  ( card `  ( B  ^m  ( aleph `  A ) ) )  e.  ran  aleph ) )
36 alephfnon 7708 . . . . . . . . . . 11  |-  aleph  Fn  On
37 fvelrnb 5586 . . . . . . . . . . 11  |-  ( aleph  Fn  On  ->  ( ( card `  ( B  ^m  ( aleph `  A )
) )  e.  ran  aleph  <->  E. x  e.  On  ( aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )
3836, 37ax-mp 8 . . . . . . . . . 10  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  e.  ran  aleph  <->  E. x  e.  On  ( aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) ) )
3935, 38syl6ib 217 . . . . . . . . 9  |-  ( A  e.  On  ->  ( 2o 
~<_  B  ->  E. x  e.  On  ( aleph `  x
)  =  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )
40 eqid 2296 . . . . . . . . . . . 12  |-  ( y  e.  ( cf `  ( aleph `  x ) ) 
|->  (har `  ( z `  y ) ) )  =  ( y  e.  ( cf `  ( aleph `  x ) ) 
|->  (har `  ( z `  y ) ) )
4140pwcfsdom 8221 . . . . . . . . . . 11  |-  ( aleph `  x )  ~<  (
( aleph `  x )  ^m  ( cf `  ( aleph `  x ) ) )
42 id 19 . . . . . . . . . . . 12  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) ) )
43 fveq2 5541 . . . . . . . . . . . . 13  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( cf `  ( aleph `  x ) )  =  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )
4442, 43oveq12d 5892 . . . . . . . . . . . 12  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( ( aleph `  x
)  ^m  ( cf `  ( aleph `  x )
) )  =  ( ( card `  ( B  ^m  ( aleph `  A
) ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) ) )
4542, 44breq12d 4052 . . . . . . . . . . 11  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( ( aleph `  x
)  ~<  ( ( aleph `  x )  ^m  ( cf `  ( aleph `  x
) ) )  <->  ( card `  ( B  ^m  ( aleph `  A ) ) )  ~<  ( ( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
4641, 45mpbii 202 . . . . . . . . . 10  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( card `  ( B  ^m  ( aleph `  A )
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
4746rexlimivw 2676 . . . . . . . . 9  |-  ( E. x  e.  On  ( aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( card `  ( B  ^m  ( aleph `  A )
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
4839, 47syl6 29 . . . . . . . 8  |-  ( A  e.  On  ->  ( 2o 
~<_  B  ->  ( card `  ( B  ^m  ( aleph `  A ) ) )  ~<  ( ( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
4948imp 418 . . . . . . 7  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  ( card `  ( B  ^m  ( aleph `  A )
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
50 ensdomtr 7013 . . . . . . 7  |-  ( ( ( B  ^m  ( aleph `  A ) ) 
~~  ( card `  ( B  ^m  ( aleph `  A
) ) )  /\  ( card `  ( B  ^m  ( aleph `  A )
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )  ->  ( B  ^m  ( aleph `  A
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
513, 49, 50sylancr 644 . . . . . 6  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  ( B  ^m  ( aleph `  A
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
52 fvex 5555 . . . . . . . . 9  |-  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  e.  _V
5352enref 6910 . . . . . . . 8  |-  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) 
~~  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )
54 mapen 7041 . . . . . . . 8  |-  ( ( ( card `  ( B  ^m  ( aleph `  A
) ) )  ~~  ( B  ^m  ( aleph `  A ) )  /\  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~~  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  -> 
( ( card `  ( B  ^m  ( aleph `  A
) ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  ~~  ( ( B  ^m  ( aleph `  A )
)  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
552, 53, 54mp2an 653 . . . . . . 7  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~~  ( ( B  ^m  ( aleph `  A ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )
56 cfpwsdom.1 . . . . . . . 8  |-  B  e. 
_V
57 mapxpen 7043 . . . . . . . 8  |-  ( ( B  e.  _V  /\  ( aleph `  A )  e.  On  /\  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  e.  _V )  -> 
( ( B  ^m  ( aleph `  A )
)  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~~  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
5856, 19, 52, 57mp3an 1277 . . . . . . 7  |-  ( ( B  ^m  ( aleph `  A ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  ~~  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )
5955, 58entri 6931 . . . . . 6  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~~  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
60 sdomentr 7011 . . . . . 6  |-  ( ( ( B  ^m  ( aleph `  A ) ) 
~<  ( ( card `  ( B  ^m  ( aleph `  A
) ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  /\  ( ( card `  ( B  ^m  ( aleph `  A
) ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  ~~  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) ) )  ->  ( B  ^m  ( aleph `  A
) )  ~<  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
6151, 59, 60sylancl 643 . . . . 5  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  ( B  ^m  ( aleph `  A
) )  ~<  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
624xpdom2 6973 . . . . . . . . . 10  |-  ( ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  ~<_  ( aleph `  A )  ->  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )  ~<_  ( ( aleph `  A
)  X.  ( aleph `  A ) ) )
6318biimpi 186 . . . . . . . . . . 11  |-  ( A  e.  On  ->  om  C_  ( aleph `  A ) )
64 infxpen 7658 . . . . . . . . . . 11  |-  ( ( ( aleph `  A )  e.  On  /\  om  C_  ( aleph `  A ) )  ->  ( ( aleph `  A )  X.  ( aleph `  A ) ) 
~~  ( aleph `  A
) )
6519, 63, 64sylancr 644 . . . . . . . . . 10  |-  ( A  e.  On  ->  (
( aleph `  A )  X.  ( aleph `  A )
)  ~~  ( aleph `  A ) )
66 domentr 6936 . . . . . . . . . 10  |-  ( ( ( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~<_  ( ( aleph `  A )  X.  ( aleph `  A ) )  /\  ( ( aleph `  A )  X.  ( aleph `  A ) ) 
~~  ( aleph `  A
) )  ->  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )  ~<_  ( aleph `  A )
)
6762, 65, 66syl2an 463 . . . . . . . . 9  |-  ( ( ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A )  /\  A  e.  On )  ->  ( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~<_  ( aleph `  A
) )
68 nsuceq0 4488 . . . . . . . . . . 11  |-  suc  1o  =/=  (/)
69 dom0 7005 . . . . . . . . . . 11  |-  ( suc 
1o  ~<_  (/)  <->  suc  1o  =  (/) )
7068, 69nemtbir 2547 . . . . . . . . . 10  |-  -.  suc  1o  ~<_  (/)
71 df-2o 6496 . . . . . . . . . . . . . 14  |-  2o  =  suc  1o
7271breq1i 4046 . . . . . . . . . . . . 13  |-  ( 2o  ~<_  B  <->  suc  1o  ~<_  B )
73 breq2 4043 . . . . . . . . . . . . 13  |-  ( B  =  (/)  ->  ( suc 
1o  ~<_  B  <->  suc  1o  ~<_  (/) ) )
7472, 73syl5bb 248 . . . . . . . . . . . 12  |-  ( B  =  (/)  ->  ( 2o  ~<_  B  <->  suc  1o  ~<_  (/) ) )
7574biimpcd 215 . . . . . . . . . . 11  |-  ( 2o  ~<_  B  ->  ( B  =  (/)  ->  suc  1o  ~<_  (/) ) )
7675adantld 453 . . . . . . . . . 10  |-  ( 2o  ~<_  B  ->  ( (
( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  =  (/)  /\  B  =  (/) )  ->  suc  1o  ~<_  (/) ) )
7770, 76mtoi 169 . . . . . . . . 9  |-  ( 2o  ~<_  B  ->  -.  (
( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  =  (/)  /\  B  =  (/) ) )
78 mapdom2 7048 . . . . . . . . 9  |-  ( ( ( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~<_  ( aleph `  A
)  /\  -.  (
( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  =  (/)  /\  B  =  (/) ) )  -> 
( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )  ~<_  ( B  ^m  ( aleph `  A )
) )
7967, 77, 78syl2an 463 . . . . . . . 8  |-  ( ( ( ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A )  /\  A  e.  On )  /\  2o  ~<_  B )  -> 
( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )  ~<_  ( B  ^m  ( aleph `  A )
) )
80 domnsym 7003 . . . . . . . 8  |-  ( ( B  ^m  ( (
aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )  ~<_  ( B  ^m  ( aleph `  A )
)  ->  -.  ( B  ^m  ( aleph `  A
) )  ~<  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
8179, 80syl 15 . . . . . . 7  |-  ( ( ( ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A )  /\  A  e.  On )  /\  2o  ~<_  B )  ->  -.  ( B  ^m  ( aleph `  A ) ) 
~<  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) ) )
8281expl 601 . . . . . 6  |-  ( ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  ~<_  ( aleph `  A )  ->  (
( A  e.  On  /\  2o  ~<_  B )  ->  -.  ( B  ^m  ( aleph `  A ) ) 
~<  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) ) ) )
8382com12 27 . . . . 5  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  (
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A )  ->  -.  ( B  ^m  ( aleph `  A ) ) 
~<  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) ) ) )
8461, 83mt2d 109 . . . 4  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  -.  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  ~<_  ( aleph `  A ) )
85 domtri 8194 . . . . . 6  |-  ( ( ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  e. 
_V  /\  ( aleph `  A )  e.  _V )  ->  ( ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  ~<_  ( aleph `  A )  <->  -.  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )
8652, 4, 85mp2an 653 . . . . 5  |-  ( ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  ~<_  ( aleph `  A )  <->  -.  ( aleph `  A )  ~< 
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )
8786biimpri 197 . . . 4  |-  ( -.  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  -> 
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A ) )
8884, 87nsyl2 119 . . 3  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  ( aleph `  A )  ~< 
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )
8988ex 423 . 2  |-  ( A  e.  On  ->  ( 2o 
~<_  B  ->  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
90 fndm 5359 . . . . . 6  |-  ( aleph  Fn  On  ->  dom  aleph  =  On )
9136, 90ax-mp 8 . . . . 5  |-  dom  aleph  =  On
9291eleq2i 2360 . . . 4  |-  ( A  e.  dom  aleph  <->  A  e.  On )
93 ndmfv 5568 . . . 4  |-  ( -.  A  e.  dom  aleph  ->  ( aleph `  A )  =  (/) )
9492, 93sylnbir 298 . . 3  |-  ( -.  A  e.  On  ->  (
aleph `  A )  =  (/) )
95 1n0 6510 . . . . . 6  |-  1o  =/=  (/)
96 1onn 6653 . . . . . . . 8  |-  1o  e.  om
9796elexi 2810 . . . . . . 7  |-  1o  e.  _V
98970sdom 7008 . . . . . 6  |-  ( (/)  ~<  1o 
<->  1o  =/=  (/) )
9995, 98mpbir 200 . . . . 5  |-  (/)  ~<  1o
100 id 19 . . . . . 6  |-  ( (
aleph `  A )  =  (/)  ->  ( aleph `  A
)  =  (/) )
101 oveq2 5882 . . . . . . . . . . 11  |-  ( (
aleph `  A )  =  (/)  ->  ( B  ^m  ( aleph `  A )
)  =  ( B  ^m  (/) ) )
102 map0e 6821 . . . . . . . . . . . 12  |-  ( B  e.  _V  ->  ( B  ^m  (/) )  =  1o )
10356, 102ax-mp 8 . . . . . . . . . . 11  |-  ( B  ^m  (/) )  =  1o
104101, 103syl6eq 2344 . . . . . . . . . 10  |-  ( (
aleph `  A )  =  (/)  ->  ( B  ^m  ( aleph `  A )
)  =  1o )
105104fveq2d 5545 . . . . . . . . 9  |-  ( (
aleph `  A )  =  (/)  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  =  ( card `  1o ) )
106 cardnn 7612 . . . . . . . . . 10  |-  ( 1o  e.  om  ->  ( card `  1o )  =  1o )
10796, 106ax-mp 8 . . . . . . . . 9  |-  ( card `  1o )  =  1o
108105, 107syl6eq 2344 . . . . . . . 8  |-  ( (
aleph `  A )  =  (/)  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  =  1o )
109108fveq2d 5545 . . . . . . 7  |-  ( (
aleph `  A )  =  (/)  ->  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  =  ( cf `  1o ) )
110 df-1o 6495 . . . . . . . . 9  |-  1o  =  suc  (/)
111110fveq2i 5544 . . . . . . . 8  |-  ( cf `  1o )  =  ( cf `  suc  (/) )
112 0elon 4461 . . . . . . . . 9  |-  (/)  e.  On
113 cfsuc 7899 . . . . . . . . 9  |-  ( (/)  e.  On  ->  ( cf ` 
suc  (/) )  =  1o )
114112, 113ax-mp 8 . . . . . . . 8  |-  ( cf ` 
suc  (/) )  =  1o
115111, 114eqtri 2316 . . . . . . 7  |-  ( cf `  1o )  =  1o
116109, 115syl6eq 2344 . . . . . 6  |-  ( (
aleph `  A )  =  (/)  ->  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  =  1o )
117100, 116breq12d 4052 . . . . 5  |-  ( (
aleph `  A )  =  (/)  ->  ( ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  <->  (/) 
~<  1o ) )
11899, 117mpbiri 224 . . . 4  |-  ( (
aleph `  A )  =  (/)  ->  ( aleph `  A
)  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )
119118a1d 22 . . 3  |-  ( (
aleph `  A )  =  (/)  ->  ( 2o  ~<_  B  -> 
( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )
12094, 119syl 15 . 2  |-  ( -.  A  e.  On  ->  ( 2o  ~<_  B  ->  ( aleph `  A )  ~< 
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )
12189, 120pm2.61i 156 1  |-  ( 2o  ~<_  B  ->  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   _Vcvv 2801    u. cun 3163    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   class class class wbr 4039    e. cmpt 4093   Oncon0 4408   suc csuc 4410   omcom 4672    X. cxp 4703   dom cdm 4705   ran crn 4706    Fn wfn 5266   ` cfv 5271  (class class class)co 5874   1oc1o 6488   2oc2o 6489    ^m cmap 6788    ~~ cen 6876    ~<_ cdom 6877    ~< csdm 6878   Fincfn 6879  harchar 7286   cardccrd 7584   alephcale 7585   cfccf 7586
This theorem is referenced by:  alephom  8223
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-ac2 8105
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-smo 6379  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-har 7288  df-card 7588  df-aleph 7589  df-cf 7590  df-acn 7591  df-ac 7759
  Copyright terms: Public domain W3C validator