MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfpwsdom Unicode version

Theorem cfpwsdom 8201
Description: A corollary of Konig's Theorem konigth 8186. Theorem 11.29 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.)
Hypothesis
Ref Expression
cfpwsdom.1  |-  B  e. 
_V
Assertion
Ref Expression
cfpwsdom  |-  ( 2o  ~<_  B  ->  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.

Proof of Theorem cfpwsdom
StepHypRef Expression
1 ovex 5844 . . . . . . . . 9  |-  ( B  ^m  ( aleph `  A
) )  e.  _V
21cardid 8164 . . . . . . . 8  |-  ( card `  ( B  ^m  ( aleph `  A ) ) )  ~~  ( B  ^m  ( aleph `  A
) )
32ensymi 6906 . . . . . . 7  |-  ( B  ^m  ( aleph `  A
) )  ~~  ( card `  ( B  ^m  ( aleph `  A )
) )
4 fvex 5499 . . . . . . . . . . . . . 14  |-  ( aleph `  A )  e.  _V
54canth2 7009 . . . . . . . . . . . . 13  |-  ( aleph `  A )  ~<  ~P ( aleph `  A )
64pw2en 6964 . . . . . . . . . . . . 13  |-  ~P ( aleph `  A )  ~~  ( 2o  ^m  ( aleph `  A ) )
7 sdomentr 6990 . . . . . . . . . . . . 13  |-  ( ( ( aleph `  A )  ~<  ~P ( aleph `  A
)  /\  ~P ( aleph `  A )  ~~  ( 2o  ^m  ( aleph `  A ) ) )  ->  ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A
) ) )
85, 6, 7mp2an 655 . . . . . . . . . . . 12  |-  ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A
) )
9 mapdom1 7021 . . . . . . . . . . . 12  |-  ( 2o  ~<_  B  ->  ( 2o  ^m  ( aleph `  A )
)  ~<_  ( B  ^m  ( aleph `  A )
) )
10 sdomdomtr 6989 . . . . . . . . . . . 12  |-  ( ( ( aleph `  A )  ~<  ( 2o  ^m  ( aleph `  A ) )  /\  ( 2o  ^m  ( aleph `  A )
)  ~<_  ( B  ^m  ( aleph `  A )
) )  ->  ( aleph `  A )  ~< 
( B  ^m  ( aleph `  A ) ) )
118, 9, 10sylancr 646 . . . . . . . . . . 11  |-  ( 2o  ~<_  B  ->  ( aleph `  A )  ~<  ( B  ^m  ( aleph `  A
) ) )
12 ficard 8182 . . . . . . . . . . . . . . . . 17  |-  ( ( B  ^m  ( aleph `  A ) )  e. 
_V  ->  ( ( B  ^m  ( aleph `  A
) )  e.  Fin  <->  ( card `  ( B  ^m  ( aleph `  A )
) )  e.  om ) )
131, 12ax-mp 10 . . . . . . . . . . . . . . . 16  |-  ( ( B  ^m  ( aleph `  A ) )  e. 
Fin 
<->  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om )
14 isfinite 7348 . . . . . . . . . . . . . . . . 17  |-  ( ( B  ^m  ( aleph `  A ) )  e. 
Fin 
<->  ( B  ^m  ( aleph `  A ) ) 
~<  om )
15 sdomdom 6884 . . . . . . . . . . . . . . . . 17  |-  ( ( B  ^m  ( aleph `  A ) )  ~<  om  ->  ( B  ^m  ( aleph `  A )
)  ~<_  om )
1614, 15sylbi 189 . . . . . . . . . . . . . . . 16  |-  ( ( B  ^m  ( aleph `  A ) )  e. 
Fin  ->  ( B  ^m  ( aleph `  A )
)  ~<_  om )
1713, 16sylbir 206 . . . . . . . . . . . . . . 15  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  e.  om  ->  ( B  ^m  ( aleph `  A ) )  ~<_  om )
18 alephgeom 7704 . . . . . . . . . . . . . . . 16  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
19 alephon 7691 . . . . . . . . . . . . . . . . 17  |-  ( aleph `  A )  e.  On
20 ssdomg 6902 . . . . . . . . . . . . . . . . 17  |-  ( (
aleph `  A )  e.  On  ->  ( om  C_  ( aleph `  A )  ->  om  ~<_  ( aleph `  A
) ) )
2119, 20ax-mp 10 . . . . . . . . . . . . . . . 16  |-  ( om  C_  ( aleph `  A )  ->  om  ~<_  ( aleph `  A
) )
2218, 21sylbi 189 . . . . . . . . . . . . . . 15  |-  ( A  e.  On  ->  om  ~<_  ( aleph `  A ) )
23 domtr 6909 . . . . . . . . . . . . . . 15  |-  ( ( ( B  ^m  ( aleph `  A ) )  ~<_  om  /\  om  ~<_  ( aleph `  A ) )  -> 
( B  ^m  ( aleph `  A ) )  ~<_  ( aleph `  A )
)
2417, 22, 23syl2an 465 . . . . . . . . . . . . . 14  |-  ( ( ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om  /\  A  e.  On )  ->  ( B  ^m  ( aleph `  A
) )  ~<_  ( aleph `  A ) )
25 domnsym 6982 . . . . . . . . . . . . . 14  |-  ( ( B  ^m  ( aleph `  A ) )  ~<_  (
aleph `  A )  ->  -.  ( aleph `  A )  ~<  ( B  ^m  ( aleph `  A ) ) )
2624, 25syl 17 . . . . . . . . . . . . 13  |-  ( ( ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om  /\  A  e.  On )  ->  -.  ( aleph `  A )  ~< 
( B  ^m  ( aleph `  A ) ) )
2726expcom 426 . . . . . . . . . . . 12  |-  ( A  e.  On  ->  (
( card `  ( B  ^m  ( aleph `  A )
) )  e.  om  ->  -.  ( aleph `  A
)  ~<  ( B  ^m  ( aleph `  A )
) ) )
2827con2d 109 . . . . . . . . . . 11  |-  ( A  e.  On  ->  (
( aleph `  A )  ~<  ( B  ^m  ( aleph `  A ) )  ->  -.  ( card `  ( B  ^m  ( aleph `  A ) ) )  e.  om )
)
29 cardidm 7587 . . . . . . . . . . . 12  |-  ( card `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )
30 iscard3 7715 . . . . . . . . . . . . 13  |-  ( (
card `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  =  (
card `  ( B  ^m  ( aleph `  A )
) )  <->  ( card `  ( B  ^m  ( aleph `  A ) ) )  e.  ( om  u.  ran  aleph ) )
31 elun 3317 . . . . . . . . . . . . 13  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  e.  ( om  u.  ran  aleph )  <->  ( ( card `  ( B  ^m  ( aleph `  A )
) )  e.  om  \/  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
ran  aleph ) )
32 df-or 361 . . . . . . . . . . . . 13  |-  ( ( ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om  \/  ( card `  ( B  ^m  ( aleph `  A ) ) )  e.  ran  aleph )  <->  ( -.  ( card `  ( B  ^m  ( aleph `  A )
) )  e.  om  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
ran  aleph ) )
3330, 31, 323bitri 264 . . . . . . . . . . . 12  |-  ( (
card `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  =  (
card `  ( B  ^m  ( aleph `  A )
) )  <->  ( -.  ( card `  ( B  ^m  ( aleph `  A )
) )  e.  om  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
ran  aleph ) )
3429, 33mpbi 201 . . . . . . . . . . 11  |-  ( -.  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
om  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  e. 
ran  aleph )
3511, 28, 34syl56 32 . . . . . . . . . 10  |-  ( A  e.  On  ->  ( 2o 
~<_  B  ->  ( card `  ( B  ^m  ( aleph `  A ) ) )  e.  ran  aleph ) )
36 alephfnon 7687 . . . . . . . . . . 11  |-  aleph  Fn  On
37 fvelrnb 5531 . . . . . . . . . . 11  |-  ( aleph  Fn  On  ->  ( ( card `  ( B  ^m  ( aleph `  A )
) )  e.  ran  aleph  <->  E. x  e.  On  ( aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )
3836, 37ax-mp 10 . . . . . . . . . 10  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  e.  ran  aleph  <->  E. x  e.  On  ( aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) ) )
3935, 38syl6ib 219 . . . . . . . . 9  |-  ( A  e.  On  ->  ( 2o 
~<_  B  ->  E. x  e.  On  ( aleph `  x
)  =  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )
40 eqid 2284 . . . . . . . . . . . 12  |-  ( y  e.  ( cf `  ( aleph `  x ) ) 
|->  (har `  ( z `  y ) ) )  =  ( y  e.  ( cf `  ( aleph `  x ) ) 
|->  (har `  ( z `  y ) ) )
4140pwcfsdom 8200 . . . . . . . . . . 11  |-  ( aleph `  x )  ~<  (
( aleph `  x )  ^m  ( cf `  ( aleph `  x ) ) )
42 id 21 . . . . . . . . . . . 12  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) ) )
43 fveq2 5485 . . . . . . . . . . . . 13  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( cf `  ( aleph `  x ) )  =  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )
4442, 43oveq12d 5837 . . . . . . . . . . . 12  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( ( aleph `  x
)  ^m  ( cf `  ( aleph `  x )
) )  =  ( ( card `  ( B  ^m  ( aleph `  A
) ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) ) )
4542, 44breq12d 4037 . . . . . . . . . . 11  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( ( aleph `  x
)  ~<  ( ( aleph `  x )  ^m  ( cf `  ( aleph `  x
) ) )  <->  ( card `  ( B  ^m  ( aleph `  A ) ) )  ~<  ( ( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
4641, 45mpbii 204 . . . . . . . . . 10  |-  ( (
aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( card `  ( B  ^m  ( aleph `  A )
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
4746rexlimivw 2664 . . . . . . . . 9  |-  ( E. x  e.  On  ( aleph `  x )  =  ( card `  ( B  ^m  ( aleph `  A
) ) )  -> 
( card `  ( B  ^m  ( aleph `  A )
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
4839, 47syl6 31 . . . . . . . 8  |-  ( A  e.  On  ->  ( 2o 
~<_  B  ->  ( card `  ( B  ^m  ( aleph `  A ) ) )  ~<  ( ( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
4948imp 420 . . . . . . 7  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  ( card `  ( B  ^m  ( aleph `  A )
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
50 ensdomtr 6992 . . . . . . 7  |-  ( ( ( B  ^m  ( aleph `  A ) ) 
~~  ( card `  ( B  ^m  ( aleph `  A
) ) )  /\  ( card `  ( B  ^m  ( aleph `  A )
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )  ->  ( B  ^m  ( aleph `  A
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
513, 49, 50sylancr 646 . . . . . 6  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  ( B  ^m  ( aleph `  A
) )  ~<  (
( card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
52 fvex 5499 . . . . . . . . 9  |-  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  e.  _V
5352enref 6889 . . . . . . . 8  |-  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) 
~~  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )
54 mapen 7020 . . . . . . . 8  |-  ( ( ( card `  ( B  ^m  ( aleph `  A
) ) )  ~~  ( B  ^m  ( aleph `  A ) )  /\  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~~  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  -> 
( ( card `  ( B  ^m  ( aleph `  A
) ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  ~~  ( ( B  ^m  ( aleph `  A )
)  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
552, 53, 54mp2an 655 . . . . . . 7  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~~  ( ( B  ^m  ( aleph `  A ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )
56 cfpwsdom.1 . . . . . . . 8  |-  B  e. 
_V
57 mapxpen 7022 . . . . . . . 8  |-  ( ( B  e.  _V  /\  ( aleph `  A )  e.  On  /\  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  e.  _V )  -> 
( ( B  ^m  ( aleph `  A )
)  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~~  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
5856, 19, 52, 57mp3an 1279 . . . . . . 7  |-  ( ( B  ^m  ( aleph `  A ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  ~~  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )
5955, 58entri 6910 . . . . . 6  |-  ( (
card `  ( B  ^m  ( aleph `  A )
) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~~  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
60 sdomentr 6990 . . . . . 6  |-  ( ( ( B  ^m  ( aleph `  A ) ) 
~<  ( ( card `  ( B  ^m  ( aleph `  A
) ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  /\  ( ( card `  ( B  ^m  ( aleph `  A
) ) )  ^m  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) ) )  ~~  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) ) )  ->  ( B  ^m  ( aleph `  A
) )  ~<  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
6151, 59, 60sylancl 645 . . . . 5  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  ( B  ^m  ( aleph `  A
) )  ~<  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
624xpdom2 6952 . . . . . . . . . 10  |-  ( ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  ~<_  ( aleph `  A )  ->  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )  ~<_  ( ( aleph `  A
)  X.  ( aleph `  A ) ) )
6318biimpi 188 . . . . . . . . . . 11  |-  ( A  e.  On  ->  om  C_  ( aleph `  A ) )
64 infxpen 7637 . . . . . . . . . . 11  |-  ( ( ( aleph `  A )  e.  On  /\  om  C_  ( aleph `  A ) )  ->  ( ( aleph `  A )  X.  ( aleph `  A ) ) 
~~  ( aleph `  A
) )
6519, 63, 64sylancr 646 . . . . . . . . . 10  |-  ( A  e.  On  ->  (
( aleph `  A )  X.  ( aleph `  A )
)  ~~  ( aleph `  A ) )
66 domentr 6915 . . . . . . . . . 10  |-  ( ( ( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~<_  ( ( aleph `  A )  X.  ( aleph `  A ) )  /\  ( ( aleph `  A )  X.  ( aleph `  A ) ) 
~~  ( aleph `  A
) )  ->  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )  ~<_  ( aleph `  A )
)
6762, 65, 66syl2an 465 . . . . . . . . 9  |-  ( ( ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A )  /\  A  e.  On )  ->  ( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~<_  ( aleph `  A
) )
68 nsuceq0 4471 . . . . . . . . . . 11  |-  suc  1o  =/=  (/)
69 dom0 6984 . . . . . . . . . . 11  |-  ( suc 
1o  ~<_  (/)  <->  suc  1o  =  (/) )
7068, 69nemtbir 2535 . . . . . . . . . 10  |-  -.  suc  1o  ~<_  (/)
71 df-2o 6475 . . . . . . . . . . . . . 14  |-  2o  =  suc  1o
7271breq1i 4031 . . . . . . . . . . . . 13  |-  ( 2o  ~<_  B  <->  suc  1o  ~<_  B )
73 breq2 4028 . . . . . . . . . . . . 13  |-  ( B  =  (/)  ->  ( suc 
1o  ~<_  B  <->  suc  1o  ~<_  (/) ) )
7472, 73syl5bb 250 . . . . . . . . . . . 12  |-  ( B  =  (/)  ->  ( 2o  ~<_  B  <->  suc  1o  ~<_  (/) ) )
7574biimpcd 217 . . . . . . . . . . 11  |-  ( 2o  ~<_  B  ->  ( B  =  (/)  ->  suc  1o  ~<_  (/) ) )
7675adantld 455 . . . . . . . . . 10  |-  ( 2o  ~<_  B  ->  ( (
( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  =  (/)  /\  B  =  (/) )  ->  suc  1o  ~<_  (/) ) )
7770, 76mtoi 171 . . . . . . . . 9  |-  ( 2o  ~<_  B  ->  -.  (
( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  =  (/)  /\  B  =  (/) ) )
78 mapdom2 7027 . . . . . . . . 9  |-  ( ( ( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  ~<_  ( aleph `  A
)  /\  -.  (
( ( aleph `  A
)  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )  =  (/)  /\  B  =  (/) ) )  -> 
( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )  ~<_  ( B  ^m  ( aleph `  A )
) )
7967, 77, 78syl2an 465 . . . . . . . 8  |-  ( ( ( ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A )  /\  A  e.  On )  /\  2o  ~<_  B )  -> 
( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )  ~<_  ( B  ^m  ( aleph `  A )
) )
80 domnsym 6982 . . . . . . . 8  |-  ( ( B  ^m  ( (
aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )  ~<_  ( B  ^m  ( aleph `  A )
)  ->  -.  ( B  ^m  ( aleph `  A
) )  ~<  ( B  ^m  ( ( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) ) )
8179, 80syl 17 . . . . . . 7  |-  ( ( ( ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A )  /\  A  e.  On )  /\  2o  ~<_  B )  ->  -.  ( B  ^m  ( aleph `  A ) ) 
~<  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) ) )
8281expl 603 . . . . . 6  |-  ( ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  ~<_  ( aleph `  A )  ->  (
( A  e.  On  /\  2o  ~<_  B )  ->  -.  ( B  ^m  ( aleph `  A ) ) 
~<  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) ) ) )
8382com12 29 . . . . 5  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  (
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A )  ->  -.  ( B  ^m  ( aleph `  A ) ) 
~<  ( B  ^m  (
( aleph `  A )  X.  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) ) ) )
8461, 83mt2d 111 . . . 4  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  -.  ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  ~<_  ( aleph `  A ) )
85 domtri 8173 . . . . . 6  |-  ( ( ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  e. 
_V  /\  ( aleph `  A )  e.  _V )  ->  ( ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  ~<_  ( aleph `  A )  <->  -.  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )
8652, 4, 85mp2an 655 . . . . 5  |-  ( ( cf `  ( card `  ( B  ^m  ( aleph `  A ) ) ) )  ~<_  ( aleph `  A )  <->  -.  ( aleph `  A )  ~< 
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )
8786biimpri 199 . . . 4  |-  ( -.  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  -> 
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  ~<_  (
aleph `  A ) )
8884, 87nsyl2 121 . . 3  |-  ( ( A  e.  On  /\  2o 
~<_  B )  ->  ( aleph `  A )  ~< 
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )
8988ex 425 . 2  |-  ( A  e.  On  ->  ( 2o 
~<_  B  ->  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) ) )
90 fndm 5308 . . . . . 6  |-  ( aleph  Fn  On  ->  dom  aleph  =  On )
9136, 90ax-mp 10 . . . . 5  |-  dom  aleph  =  On
9291eleq2i 2348 . . . 4  |-  ( A  e.  dom  aleph  <->  A  e.  On )
93 ndmfv 5513 . . . 4  |-  ( -.  A  e.  dom  aleph  ->  ( aleph `  A )  =  (/) )
9492, 93sylnbir 300 . . 3  |-  ( -.  A  e.  On  ->  (
aleph `  A )  =  (/) )
95 1n0 6489 . . . . . 6  |-  1o  =/=  (/)
96 1onn 6632 . . . . . . . 8  |-  1o  e.  om
9796elexi 2798 . . . . . . 7  |-  1o  e.  _V
98970sdom 6987 . . . . . 6  |-  ( (/)  ~<  1o 
<->  1o  =/=  (/) )
9995, 98mpbir 202 . . . . 5  |-  (/)  ~<  1o
100 id 21 . . . . . 6  |-  ( (
aleph `  A )  =  (/)  ->  ( aleph `  A
)  =  (/) )
101 oveq2 5827 . . . . . . . . . . 11  |-  ( (
aleph `  A )  =  (/)  ->  ( B  ^m  ( aleph `  A )
)  =  ( B  ^m  (/) ) )
102 map0e 6800 . . . . . . . . . . . 12  |-  ( B  e.  _V  ->  ( B  ^m  (/) )  =  1o )
10356, 102ax-mp 10 . . . . . . . . . . 11  |-  ( B  ^m  (/) )  =  1o
104101, 103syl6eq 2332 . . . . . . . . . 10  |-  ( (
aleph `  A )  =  (/)  ->  ( B  ^m  ( aleph `  A )
)  =  1o )
105104fveq2d 5489 . . . . . . . . 9  |-  ( (
aleph `  A )  =  (/)  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  =  ( card `  1o ) )
106 cardnn 7591 . . . . . . . . . 10  |-  ( 1o  e.  om  ->  ( card `  1o )  =  1o )
10796, 106ax-mp 10 . . . . . . . . 9  |-  ( card `  1o )  =  1o
108105, 107syl6eq 2332 . . . . . . . 8  |-  ( (
aleph `  A )  =  (/)  ->  ( card `  ( B  ^m  ( aleph `  A
) ) )  =  1o )
109108fveq2d 5489 . . . . . . 7  |-  ( (
aleph `  A )  =  (/)  ->  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  =  ( cf `  1o ) )
110 df-1o 6474 . . . . . . . . 9  |-  1o  =  suc  (/)
111110fveq2i 5488 . . . . . . . 8  |-  ( cf `  1o )  =  ( cf `  suc  (/) )
112 0elon 4444 . . . . . . . . 9  |-  (/)  e.  On
113 cfsuc 7878 . . . . . . . . 9  |-  ( (/)  e.  On  ->  ( cf ` 
suc  (/) )  =  1o )
114112, 113ax-mp 10 . . . . . . . 8  |-  ( cf ` 
suc  (/) )  =  1o
115111, 114eqtri 2304 . . . . . . 7  |-  ( cf `  1o )  =  1o
116109, 115syl6eq 2332 . . . . . 6  |-  ( (
aleph `  A )  =  (/)  ->  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) )  =  1o )
117100, 116breq12d 4037 . . . . 5  |-  ( (
aleph `  A )  =  (/)  ->  ( ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) )  <->  (/) 
~<  1o ) )
11899, 117mpbiri 226 . . . 4  |-  ( (
aleph `  A )  =  (/)  ->  ( aleph `  A
)  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) )
119118a1d 24 . . 3  |-  ( (
aleph `  A )  =  (/)  ->  ( 2o  ~<_  B  -> 
( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )
12094, 119syl 17 . 2  |-  ( -.  A  e.  On  ->  ( 2o  ~<_  B  ->  ( aleph `  A )  ~< 
( cf `  ( card `  ( B  ^m  ( aleph `  A )
) ) ) ) )
12189, 120pm2.61i 158 1  |-  ( 2o  ~<_  B  ->  ( aleph `  A )  ~<  ( cf `  ( card `  ( B  ^m  ( aleph `  A
) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2447   E.wrex 2545   _Vcvv 2789    u. cun 3151    C_ wss 3153   (/)c0 3456   ~Pcpw 3626   class class class wbr 4024    e. cmpt 4078   Oncon0 4391   suc csuc 4393   omcom 4655    X. cxp 4686   dom cdm 4688   ran crn 4689    Fn wfn 5216   ` cfv 5221  (class class class)co 5819   1oc1o 6467   2oc2o 6468    ^m cmap 6767    ~~ cen 6855    ~<_ cdom 6856    ~< csdm 6857   Fincfn 6858  harchar 7265   cardccrd 7563   alephcale 7564   cfccf 7565
This theorem is referenced by:  alephom  8202
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-ac2 8084
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-smo 6358  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6655  df-map 6769  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-oi 7220  df-har 7267  df-card 7567  df-aleph 7568  df-cf 7569  df-acn 7570  df-ac 7738
  Copyright terms: Public domain W3C validator