MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfsuc Unicode version

Theorem cfsuc 7878
Description: Value of the cofinality function at a successor ordinal. Exercise 3 of [TakeutiZaring] p. 102. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 12-Feb-2013.)
Assertion
Ref Expression
cfsuc  |-  ( A  e.  On  ->  ( cf `  suc  A )  =  1o )
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.

Proof of Theorem cfsuc
StepHypRef Expression
1 sucelon 4607 . . 3  |-  ( A  e.  On  <->  suc  A  e.  On )
2 cfval 7868 . . 3  |-  ( suc 
A  e.  On  ->  ( cf `  suc  A
)  =  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) } )
31, 2sylbi 189 . 2  |-  ( A  e.  On  ->  ( cf `  suc  A )  =  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) } )
4 cardsn 7597 . . . . . 6  |-  ( A  e.  On  ->  ( card `  { A }
)  =  1o )
54eqcomd 2289 . . . . 5  |-  ( A  e.  On  ->  1o  =  ( card `  { A } ) )
6 snidg 3666 . . . . . . . 8  |-  ( A  e.  On  ->  A  e.  { A } )
7 elsuci 4457 . . . . . . . . 9  |-  ( z  e.  suc  A  -> 
( z  e.  A  \/  z  =  A
) )
8 onelss 4433 . . . . . . . . . 10  |-  ( A  e.  On  ->  (
z  e.  A  -> 
z  C_  A )
)
9 eqimss 3231 . . . . . . . . . . 11  |-  ( z  =  A  ->  z  C_  A )
109a1i 12 . . . . . . . . . 10  |-  ( A  e.  On  ->  (
z  =  A  -> 
z  C_  A )
)
118, 10jaod 371 . . . . . . . . 9  |-  ( A  e.  On  ->  (
( z  e.  A  \/  z  =  A
)  ->  z  C_  A ) )
127, 11syl5 30 . . . . . . . 8  |-  ( A  e.  On  ->  (
z  e.  suc  A  ->  z  C_  A )
)
13 sseq2 3201 . . . . . . . . 9  |-  ( w  =  A  ->  (
z  C_  w  <->  z  C_  A ) )
1413rspcev 2885 . . . . . . . 8  |-  ( ( A  e.  { A }  /\  z  C_  A
)  ->  E. w  e.  { A } z 
C_  w )
156, 12, 14ee12an 1355 . . . . . . 7  |-  ( A  e.  On  ->  (
z  e.  suc  A  ->  E. w  e.  { A } z  C_  w
) )
1615ralrimiv 2626 . . . . . 6  |-  ( A  e.  On  ->  A. z  e.  suc  A E. w  e.  { A } z 
C_  w )
17 ssun2 3340 . . . . . . 7  |-  { A }  C_  ( A  u.  { A } )
18 df-suc 4397 . . . . . . 7  |-  suc  A  =  ( A  u.  { A } )
1917, 18sseqtr4i 3212 . . . . . 6  |-  { A }  C_  suc  A
2016, 19jctil 525 . . . . 5  |-  ( A  e.  On  ->  ( { A }  C_  suc  A  /\  A. z  e. 
suc  A E. w  e.  { A } z 
C_  w ) )
21 snex 4215 . . . . . 6  |-  { A }  e.  _V
22 fveq2 5485 . . . . . . . 8  |-  ( y  =  { A }  ->  ( card `  y
)  =  ( card `  { A } ) )
2322eqeq2d 2295 . . . . . . 7  |-  ( y  =  { A }  ->  ( 1o  =  (
card `  y )  <->  1o  =  ( card `  { A } ) ) )
24 sseq1 3200 . . . . . . . 8  |-  ( y  =  { A }  ->  ( y  C_  suc  A  <->  { A }  C_  suc  A ) )
25 rexeq 2738 . . . . . . . . 9  |-  ( y  =  { A }  ->  ( E. w  e.  y  z  C_  w  <->  E. w  e.  { A } z  C_  w
) )
2625ralbidv 2564 . . . . . . . 8  |-  ( y  =  { A }  ->  ( A. z  e. 
suc  A E. w  e.  y  z  C_  w 
<-> 
A. z  e.  suc  A E. w  e.  { A } z  C_  w
) )
2724, 26anbi12d 693 . . . . . . 7  |-  ( y  =  { A }  ->  ( ( y  C_  suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w )  <->  ( { A }  C_  suc  A  /\  A. z  e.  suc  A E. w  e.  { A } z  C_  w
) ) )
2823, 27anbi12d 693 . . . . . 6  |-  ( y  =  { A }  ->  ( ( 1o  =  ( card `  y )  /\  ( y  C_  suc  A  /\  A. z  e. 
suc  A E. w  e.  y  z  C_  w ) )  <->  ( 1o  =  ( card `  { A } )  /\  ( { A }  C_  suc  A  /\  A. z  e. 
suc  A E. w  e.  { A } z 
C_  w ) ) ) )
2921, 28spcev 2876 . . . . 5  |-  ( ( 1o  =  ( card `  { A } )  /\  ( { A }  C_  suc  A  /\  A. z  e.  suc  A E. w  e.  { A } z  C_  w
) )  ->  E. y
( 1o  =  (
card `  y )  /\  ( y  C_  suc  A  /\  A. z  e. 
suc  A E. w  e.  y  z  C_  w ) ) )
305, 20, 29syl2anc 644 . . . 4  |-  ( A  e.  On  ->  E. y
( 1o  =  (
card `  y )  /\  ( y  C_  suc  A  /\  A. z  e. 
suc  A E. w  e.  y  z  C_  w ) ) )
31 1on 6481 . . . . . 6  |-  1o  e.  On
3231elexi 2798 . . . . 5  |-  1o  e.  _V
33 eqeq1 2290 . . . . . . 7  |-  ( x  =  1o  ->  (
x  =  ( card `  y )  <->  1o  =  ( card `  y )
) )
3433anbi1d 687 . . . . . 6  |-  ( x  =  1o  ->  (
( x  =  (
card `  y )  /\  ( y  C_  suc  A  /\  A. z  e. 
suc  A E. w  e.  y  z  C_  w ) )  <->  ( 1o  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) ) )
3534exbidv 1613 . . . . 5  |-  ( x  =  1o  ->  ( E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) )  <->  E. y
( 1o  =  (
card `  y )  /\  ( y  C_  suc  A  /\  A. z  e. 
suc  A E. w  e.  y  z  C_  w ) ) ) )
3632, 35elab 2915 . . . 4  |-  ( 1o  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) }  <->  E. y ( 1o  =  ( card `  y )  /\  ( y  C_  suc  A  /\  A. z  e. 
suc  A E. w  e.  y  z  C_  w ) ) )
3730, 36sylibr 205 . . 3  |-  ( A  e.  On  ->  1o  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) } )
38 el1o 6493 . . . . 5  |-  ( v  e.  1o  <->  v  =  (/) )
39 eqcom 2286 . . . . . . . . . . . . . . 15  |-  ( (/)  =  ( card `  y
)  <->  ( card `  y
)  =  (/) )
40 vex 2792 . . . . . . . . . . . . . . . . 17  |-  y  e. 
_V
41 onssnum 7662 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  _V  /\  y  C_  On )  -> 
y  e.  dom  card )
4240, 41mpan 653 . . . . . . . . . . . . . . . 16  |-  ( y 
C_  On  ->  y  e. 
dom  card )
43 cardnueq0 7592 . . . . . . . . . . . . . . . 16  |-  ( y  e.  dom  card  ->  ( ( card `  y
)  =  (/)  <->  y  =  (/) ) )
4442, 43syl 17 . . . . . . . . . . . . . . 15  |-  ( y 
C_  On  ->  ( (
card `  y )  =  (/)  <->  y  =  (/) ) )
4539, 44syl5bb 250 . . . . . . . . . . . . . 14  |-  ( y 
C_  On  ->  ( (/)  =  ( card `  y
)  <->  y  =  (/) ) )
4645biimpa 472 . . . . . . . . . . . . 13  |-  ( ( y  C_  On  /\  (/)  =  (
card `  y )
)  ->  y  =  (/) )
47 rex0 3469 . . . . . . . . . . . . . . . . 17  |-  -.  E. w  e.  (/)  z  C_  w
4847a1i 12 . . . . . . . . . . . . . . . 16  |-  ( z  e.  suc  A  ->  -.  E. w  e.  (/)  z  C_  w )
4948nrex 2646 . . . . . . . . . . . . . . 15  |-  -.  E. z  e.  suc  A E. w  e.  (/)  z  C_  w
50 nsuceq0 4471 . . . . . . . . . . . . . . . 16  |-  suc  A  =/=  (/)
51 r19.2z 3544 . . . . . . . . . . . . . . . 16  |-  ( ( suc  A  =/=  (/)  /\  A. z  e.  suc  A E. w  e.  (/)  z  C_  w )  ->  E. z  e.  suc  A E. w  e.  (/)  z  C_  w
)
5250, 51mpan 653 . . . . . . . . . . . . . . 15  |-  ( A. z  e.  suc  A E. w  e.  (/)  z  C_  w  ->  E. z  e.  suc  A E. w  e.  (/)  z  C_  w )
5349, 52mto 169 . . . . . . . . . . . . . 14  |-  -.  A. z  e.  suc  A E. w  e.  (/)  z  C_  w
54 rexeq 2738 . . . . . . . . . . . . . . 15  |-  ( y  =  (/)  ->  ( E. w  e.  y  z 
C_  w  <->  E. w  e.  (/)  z  C_  w
) )
5554ralbidv 2564 . . . . . . . . . . . . . 14  |-  ( y  =  (/)  ->  ( A. z  e.  suc  A E. w  e.  y  z  C_  w  <->  A. z  e.  suc  A E. w  e.  (/)  z  C_  w ) )
5653, 55mtbiri 296 . . . . . . . . . . . . 13  |-  ( y  =  (/)  ->  -.  A. z  e.  suc  A E. w  e.  y  z  C_  w )
5746, 56syl 17 . . . . . . . . . . . 12  |-  ( ( y  C_  On  /\  (/)  =  (
card `  y )
)  ->  -.  A. z  e.  suc  A E. w  e.  y  z  C_  w )
5857intnand 884 . . . . . . . . . . 11  |-  ( ( y  C_  On  /\  (/)  =  (
card `  y )
)  ->  -.  (
y  C_  suc  A  /\  A. z  e.  suc  A E. w  e.  y 
z  C_  w )
)
59 imnan 413 . . . . . . . . . . 11  |-  ( ( ( y  C_  On  /\  (/)  =  ( card `  y
) )  ->  -.  ( y  C_  suc  A  /\  A. z  e. 
suc  A E. w  e.  y  z  C_  w ) )  <->  -.  (
( y  C_  On  /\  (/)  =  ( card `  y
) )  /\  (
y  C_  suc  A  /\  A. z  e.  suc  A E. w  e.  y 
z  C_  w )
) )
6058, 59mpbi 201 . . . . . . . . . 10  |-  -.  (
( y  C_  On  /\  (/)  =  ( card `  y
) )  /\  (
y  C_  suc  A  /\  A. z  e.  suc  A E. w  e.  y 
z  C_  w )
)
61 suceloni 4603 . . . . . . . . . . . . . . . 16  |-  ( A  e.  On  ->  suc  A  e.  On )
62 onss 4581 . . . . . . . . . . . . . . . . 17  |-  ( suc 
A  e.  On  ->  suc 
A  C_  On )
63 sstr 3188 . . . . . . . . . . . . . . . . 17  |-  ( ( y  C_  suc  A  /\  suc  A  C_  On )  ->  y  C_  On )
6462, 63sylan2 462 . . . . . . . . . . . . . . . 16  |-  ( ( y  C_  suc  A  /\  suc  A  e.  On )  ->  y  C_  On )
6561, 64sylan2 462 . . . . . . . . . . . . . . 15  |-  ( ( y  C_  suc  A  /\  A  e.  On )  ->  y  C_  On )
6665ancoms 441 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  y  C_  suc  A )  ->  y  C_  On )
6766adantrr 699 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  ( y  C_  suc  A  /\  A. z  e. 
suc  A E. w  e.  y  z  C_  w ) )  -> 
y  C_  On )
68673adant2 976 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  (/)  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) )  -> 
y  C_  On )
69 simp2 958 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  (/)  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) )  ->  (/)  =  ( card `  y
) )
70 simp3 959 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  (/)  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) )  -> 
( y  C_  suc  A  /\  A. z  e. 
suc  A E. w  e.  y  z  C_  w ) )
7168, 69, 70jca31 522 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  (/)  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) )  -> 
( ( y  C_  On  /\  (/)  =  ( card `  y ) )  /\  ( y  C_  suc  A  /\  A. z  e. 
suc  A E. w  e.  y  z  C_  w ) ) )
72713expib 1156 . . . . . . . . . 10  |-  ( A  e.  On  ->  (
( (/)  =  ( card `  y )  /\  (
y  C_  suc  A  /\  A. z  e.  suc  A E. w  e.  y 
z  C_  w )
)  ->  ( (
y  C_  On  /\  (/)  =  (
card `  y )
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) ) )
7360, 72mtoi 171 . . . . . . . . 9  |-  ( A  e.  On  ->  -.  ( (/)  =  ( card `  y )  /\  (
y  C_  suc  A  /\  A. z  e.  suc  A E. w  e.  y 
z  C_  w )
) )
7473nexdv 1858 . . . . . . . 8  |-  ( A  e.  On  ->  -.  E. y ( (/)  =  (
card `  y )  /\  ( y  C_  suc  A  /\  A. z  e. 
suc  A E. w  e.  y  z  C_  w ) ) )
75 0ex 4151 . . . . . . . . 9  |-  (/)  e.  _V
76 eqeq1 2290 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( x  =  ( card `  y
)  <->  (/)  =  ( card `  y ) ) )
7776anbi1d 687 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( ( x  =  ( card `  y )  /\  (
y  C_  suc  A  /\  A. z  e.  suc  A E. w  e.  y 
z  C_  w )
)  <->  ( (/)  =  (
card `  y )  /\  ( y  C_  suc  A  /\  A. z  e. 
suc  A E. w  e.  y  z  C_  w ) ) ) )
7877exbidv 1613 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) )  <->  E. y
( (/)  =  ( card `  y )  /\  (
y  C_  suc  A  /\  A. z  e.  suc  A E. w  e.  y 
z  C_  w )
) ) )
7975, 78elab 2915 . . . . . . . 8  |-  ( (/)  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) }  <->  E. y ( (/)  =  (
card `  y )  /\  ( y  C_  suc  A  /\  A. z  e. 
suc  A E. w  e.  y  z  C_  w ) ) )
8074, 79sylnibr 298 . . . . . . 7  |-  ( A  e.  On  ->  -.  (/) 
e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) } )
8180adantr 453 . . . . . 6  |-  ( ( A  e.  On  /\  v  =  (/) )  ->  -.  (/)  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) } )
82 eleq1 2344 . . . . . . 7  |-  ( v  =  (/)  ->  ( v  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) }  <->  (/) 
e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) } ) )
8382adantl 454 . . . . . 6  |-  ( ( A  e.  On  /\  v  =  (/) )  -> 
( v  e.  {
x  |  E. y
( x  =  (
card `  y )  /\  ( y  C_  suc  A  /\  A. z  e. 
suc  A E. w  e.  y  z  C_  w ) ) }  <->  (/) 
e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) } ) )
8481, 83mtbird 294 . . . . 5  |-  ( ( A  e.  On  /\  v  =  (/) )  ->  -.  v  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) } )
8538, 84sylan2b 463 . . . 4  |-  ( ( A  e.  On  /\  v  e.  1o )  ->  -.  v  e.  {
x  |  E. y
( x  =  (
card `  y )  /\  ( y  C_  suc  A  /\  A. z  e. 
suc  A E. w  e.  y  z  C_  w ) ) } )
8685ralrimiva 2627 . . 3  |-  ( A  e.  On  ->  A. v  e.  1o  -.  v  e. 
{ x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) } )
87 cardon 7572 . . . . . . . 8  |-  ( card `  y )  e.  On
88 eleq1 2344 . . . . . . . 8  |-  ( x  =  ( card `  y
)  ->  ( x  e.  On  <->  ( card `  y
)  e.  On ) )
8987, 88mpbiri 226 . . . . . . 7  |-  ( x  =  ( card `  y
)  ->  x  e.  On )
9089adantr 453 . . . . . 6  |-  ( ( x  =  ( card `  y )  /\  (
y  C_  suc  A  /\  A. z  e.  suc  A E. w  e.  y 
z  C_  w )
)  ->  x  e.  On )
9190exlimiv 1667 . . . . 5  |-  ( E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) )  ->  x  e.  On )
9291abssi 3249 . . . 4  |-  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) } 
C_  On
93 oneqmini 4442 . . . 4  |-  ( { x  |  E. y
( x  =  (
card `  y )  /\  ( y  C_  suc  A  /\  A. z  e. 
suc  A E. w  e.  y  z  C_  w ) ) } 
C_  On  ->  ( ( 1o  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) }  /\  A. v  e.  1o  -.  v  e. 
{ x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) } )  ->  1o  =  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) } ) )
9492, 93ax-mp 10 . . 3  |-  ( ( 1o  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) }  /\  A. v  e.  1o  -.  v  e. 
{ x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) } )  ->  1o  =  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) } )
9537, 86, 94syl2anc 644 . 2  |-  ( A  e.  On  ->  1o  =  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_ 
suc  A  /\  A. z  e.  suc  A E. w  e.  y  z  C_  w ) ) } )
963, 95eqtr4d 2319 1  |-  ( A  e.  On  ->  ( cf `  suc  A )  =  1o )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 936   E.wex 1529    = wceq 1624    e. wcel 1685   {cab 2270    =/= wne 2447   A.wral 2544   E.wrex 2545   _Vcvv 2789    u. cun 3151    C_ wss 3153   (/)c0 3456   {csn 3641   |^|cint 3863   Oncon0 4391   suc csuc 4393   dom cdm 4688   ` cfv 5221   1oc1o 6467   cardccrd 7563   cfccf 7565
This theorem is referenced by:  cflim2  7884  cfpwsdom  8201  rankcf  8394
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-iota 6252  df-riota 6299  df-recs 6383  df-1o 6474  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-card 7567  df-cf 7569
  Copyright terms: Public domain W3C validator