Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cgrextend Unicode version

Theorem cgrextend 25890
Description: Link congruence over a pair of line segments. Theorem 2.11 of [Schwabhauser] p. 29. (Contributed by Scott Fenton, 12-Jun-2013.)
Assertion
Ref Expression
cgrextend  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. ) )  ->  <. A ,  C >.Cgr <. D ,  F >. ) )

Proof of Theorem cgrextend
StepHypRef Expression
1 opeq1 3976 . . . . . . . . 9  |-  ( A  =  B  ->  <. A ,  B >.  =  <. B ,  B >. )
21breq1d 4214 . . . . . . . 8  |-  ( A  =  B  ->  ( <. A ,  B >.Cgr <. D ,  E >.  <->  <. B ,  B >.Cgr <. D ,  E >. ) )
32adantr 452 . . . . . . 7  |-  ( ( A  =  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  -> 
( <. A ,  B >.Cgr
<. D ,  E >.  <->  <. B ,  B >.Cgr <. D ,  E >. ) )
4 simp1 957 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  N  e.  NN )
5 simp22 991 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
6 simp31 993 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
7 simp32 994 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N
) )
8 cgrid2 25885 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( <. B ,  B >.Cgr
<. D ,  E >.  ->  D  =  E )
)
94, 5, 6, 7, 8syl13anc 1186 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. B ,  B >.Cgr <. D ,  E >.  ->  D  =  E )
)
109adantl 453 . . . . . . 7  |-  ( ( A  =  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  -> 
( <. B ,  B >.Cgr
<. D ,  E >.  ->  D  =  E )
)
113, 10sylbid 207 . . . . . 6  |-  ( ( A  =  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  -> 
( <. A ,  B >.Cgr
<. D ,  E >.  ->  D  =  E )
)
12 opeq1 3976 . . . . . . . . 9  |-  ( A  =  B  ->  <. A ,  C >.  =  <. B ,  C >. )
13 opeq1 3976 . . . . . . . . 9  |-  ( D  =  E  ->  <. D ,  F >.  =  <. E ,  F >. )
1412, 13breqan12d 4219 . . . . . . . 8  |-  ( ( A  =  B  /\  D  =  E )  ->  ( <. A ,  C >.Cgr
<. D ,  F >.  <->  <. B ,  C >.Cgr <. E ,  F >. ) )
1514exbiri 606 . . . . . . 7  |-  ( A  =  B  ->  ( D  =  E  ->  (
<. B ,  C >.Cgr <. E ,  F >.  ->  <. A ,  C >.Cgr <. D ,  F >. ) ) )
1615adantr 452 . . . . . 6  |-  ( ( A  =  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  -> 
( D  =  E  ->  ( <. B ,  C >.Cgr <. E ,  F >.  ->  <. A ,  C >.Cgr
<. D ,  F >. ) ) )
1711, 16syld 42 . . . . 5  |-  ( ( A  =  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  -> 
( <. A ,  B >.Cgr
<. D ,  E >.  -> 
( <. B ,  C >.Cgr
<. E ,  F >.  ->  <. A ,  C >.Cgr <. D ,  F >. ) ) )
1817imp3a 421 . . . 4  |-  ( ( A  =  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  -> 
( ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. )  ->  <. A ,  C >.Cgr
<. D ,  F >. ) )
1918adantld 454 . . 3  |-  ( ( A  =  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  -> 
( ( ( B 
Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. ) )  ->  <. A ,  C >.Cgr <. D ,  F >. ) )
2019ex 424 . 2  |-  ( A  =  B  ->  (
( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. ) )  ->  <. A ,  C >.Cgr <. D ,  F >. ) ) )
21 simpl1 960 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  N  e.  NN )
22 simpl21 1035 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  A  e.  ( EE `  N ) )
23 simpl22 1036 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  B  e.  ( EE `  N ) )
2421, 22, 233jca 1134 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) ) )
25 simpl23 1037 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  C  e.  ( EE `  N ) )
26 simpl31 1038 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  D  e.  ( EE `  N ) )
2725, 22, 263jca 1134 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )
28 simpl32 1039 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  E  e.  ( EE `  N ) )
29 simpl33 1040 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  F  e.  ( EE `  N ) )
3028, 29, 263jca 1134 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )
3124, 27, 303jca 1134 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) ) )
32 simprrl 741 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. ) )
33 simprrr 742 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( <. A ,  B >.Cgr
<. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. ) )
34 cgrtriv 25884 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  ->  <. A ,  A >.Cgr <. D ,  D >. )
3521, 22, 26, 34syl3anc 1184 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  <. A ,  A >.Cgr <. D ,  D >. )
3633simpld 446 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  <. A ,  B >.Cgr <. D ,  E >. )
37 cgrcomlr 25880 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.Cgr <. D ,  E >.  <->  <. B ,  A >.Cgr <. E ,  D >. ) )
3821, 22, 23, 26, 28, 37syl122anc 1193 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( <. A ,  B >.Cgr
<. D ,  E >.  <->  <. B ,  A >.Cgr <. E ,  D >. ) )
3936, 38mpbid 202 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  <. B ,  A >.Cgr <. E ,  D >. )
4035, 39jca 519 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( <. A ,  A >.Cgr
<. D ,  D >.  /\ 
<. B ,  A >.Cgr <. E ,  D >. ) )
41 brofs 25887 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  B >. ,  <. C ,  A >. >. 
OuterFiveSeg  <. <. D ,  E >. ,  <. F ,  D >. >. 
<->  ( ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. )  /\  ( <. A ,  A >.Cgr <. D ,  D >.  /\  <. B ,  A >.Cgr
<. E ,  D >. ) ) ) )
4221, 22, 23, 25, 22, 26, 28, 29, 26, 41syl333anc 1216 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( <. <. A ,  B >. ,  <. C ,  A >. >. 
OuterFiveSeg  <. <. D ,  E >. ,  <. F ,  D >. >. 
<->  ( ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. )  /\  ( <. A ,  A >.Cgr <. D ,  D >.  /\  <. B ,  A >.Cgr
<. E ,  D >. ) ) ) )
4332, 33, 40, 42mpbir3and 1137 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  <. <. A ,  B >. ,  <. C ,  A >. >. 
OuterFiveSeg  <. <. D ,  E >. ,  <. F ,  D >. >. )
44 simprl 733 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  A  =/=  B )
4543, 44jca 519 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( <. <. A ,  B >. ,  <. C ,  A >. >. 
OuterFiveSeg  <. <. D ,  E >. ,  <. F ,  D >. >.  /\  A  =/=  B ) )
46 5segofs 25888 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( <. <. A ,  B >. ,  <. C ,  A >. >. 
OuterFiveSeg  <. <. D ,  E >. ,  <. F ,  D >. >.  /\  A  =/=  B )  ->  <. C ,  A >.Cgr <. F ,  D >. ) )
4731, 45, 46sylc 58 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  <. C ,  A >.Cgr <. F ,  D >. )
48 cgrcomlr 25880 . . . . . 6  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( <. C ,  A >.Cgr <. F ,  D >.  <->  <. A ,  C >.Cgr <. D ,  F >. ) )
4921, 25, 22, 29, 26, 48syl122anc 1193 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( <. C ,  A >.Cgr
<. F ,  D >.  <->  <. A ,  C >.Cgr <. D ,  F >. ) )
5047, 49mpbid 202 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  <. A ,  C >.Cgr <. D ,  F >. )
5150exp32 589 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( A  =/=  B  ->  (
( ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. ) )  ->  <. A ,  C >.Cgr <. D ,  F >. ) ) )
5251com12 29 . 2  |-  ( A  =/=  B  ->  (
( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. ) )  ->  <. A ,  C >.Cgr <. D ,  F >. ) ) )
5320, 52pm2.61ine 2674 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. ) )  ->  <. A ,  C >.Cgr <. D ,  F >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   <.cop 3809   class class class wbr 4204   ` cfv 5445   NNcn 9989   EEcee 25775    Btwn cbtwn 25776  Cgrccgr 25777    OuterFiveSeg cofs 25864
This theorem is referenced by:  cgrextendand  25891  segconeq  25892  lineext  25958  brofs2  25959
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-oadd 6719  df-er 6896  df-map 7011  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-sup 7437  df-oi 7468  df-card 7815  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-n0 10211  df-z 10272  df-uz 10478  df-rp 10602  df-ico 10911  df-icc 10912  df-fz 11033  df-fzo 11124  df-seq 11312  df-exp 11371  df-hash 11607  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-clim 12270  df-sum 12468  df-ee 25778  df-btwn 25779  df-cgr 25780  df-ofs 25865
  Copyright terms: Public domain W3C validator