Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cgrxfr Unicode version

Theorem cgrxfr 25893
Description: A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of [Schwabhauser] p. 35. (Contributed by Scott Fenton, 4-Oct-2013.)
Assertion
Ref Expression
cgrxfr  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  -> 
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  ->  E. e  e.  ( EE `  N ) ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )
Distinct variable groups:    A, e    B, e    C, e    D, e   
e, F    e, N

Proof of Theorem cgrxfr
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 960 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. ) )  ->  N  e.  NN )
2 simpl3r 1013 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. ) )  ->  F  e.  ( EE `  N
) )
3 simpl3l 1012 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. ) )  ->  D  e.  ( EE `  N
) )
4 btwndiff 25865 . . . 4  |-  ( ( N  e.  NN  /\  F  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  ->  E. g  e.  ( EE `  N
) ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )
51, 2, 3, 4syl3anc 1184 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. ) )  ->  E. g  e.  ( EE `  N
) ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )
6 simpl1 960 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  ->  N  e.  NN )
7 simpr 448 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  -> 
g  e.  ( EE
`  N ) )
8 simpl3l 1012 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  ->  D  e.  ( EE `  N ) )
9 simpl21 1035 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  ->  A  e.  ( EE `  N ) )
10 simpl22 1036 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  ->  B  e.  ( EE `  N ) )
11 axsegcon 25770 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( g  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  E. e  e.  ( EE `  N ) ( D  Btwn  <. g ,  e >.  /\  <. D , 
e >.Cgr <. A ,  B >. ) )
126, 7, 8, 9, 10, 11syl122anc 1193 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  ->  E. e  e.  ( EE `  N ) ( D  Btwn  <. g ,  e >.  /\  <. D , 
e >.Cgr <. A ,  B >. ) )
1312adantr 452 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  /\  ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) ) )  ->  E. e  e.  ( EE `  N
) ( D  Btwn  <.
g ,  e >.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )
14 anass 631 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  /\  e  e.  ( EE `  N ) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) ) )
15 simpl1 960 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  ->  N  e.  NN )
16 simprl 733 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  ->  g  e.  ( EE `  N
) )
17 simprr 734 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  ->  e  e.  ( EE `  N
) )
18 simpl22 1036 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
19 simpl23 1037 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
20 axsegcon 25770 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  E. f  e.  ( EE `  N ) ( e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) )
2115, 16, 17, 18, 19, 20syl122anc 1193 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  ->  E. f  e.  ( EE `  N
) ( e  Btwn  <.
g ,  f >.  /\  <. e ,  f
>.Cgr <. B ,  C >. ) )
2221adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  /\  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) ) )  ->  E. f  e.  ( EE `  N ) ( e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) )
23 anass 631 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  /\  f  e.  ( EE `  N
) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( ( g  e.  ( EE `  N
)  /\  e  e.  ( EE `  N ) )  /\  f  e.  ( EE `  N
) ) ) )
24 df-3an 938 . . . . . . . . . . . . . . . . 17  |-  ( ( g  e.  ( EE
`  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N
) )  <->  ( (
g  e.  ( EE
`  N )  /\  e  e.  ( EE `  N ) )  /\  f  e.  ( EE `  N ) ) )
2524anbi2i 676 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( ( g  e.  ( EE `  N
)  /\  e  e.  ( EE `  N ) )  /\  f  e.  ( EE `  N
) ) ) )
2623, 25bitr4i 244 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  /\  f  e.  ( EE `  N
) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) ) )
27 simplrr 738 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  ->  D  =/=  g )
2827ad2antrl 709 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  D  =/=  g
)
2928necomd 2650 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  g  =/=  D
)
30 simpl1 960 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  N  e.  NN )
31 simpr1 963 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  g  e.  ( EE `  N
) )
32 simpl3l 1012 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
33 simpr2 964 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  e  e.  ( EE `  N
) )
34 simpr3 965 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  f  e.  ( EE `  N
) )
35 simprl 733 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  ->  D  Btwn  <. g ,  e
>. )
3635ad2antrl 709 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  D  Btwn  <. g ,  e >. )
37 simprrl 741 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  e  Btwn  <. g ,  f >. )
3830, 31, 32, 33, 34, 36, 37btwnexchand 25864 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  D  Btwn  <. g ,  f >. )
39 simpl21 1035 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
40 simpl22 1036 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
41 simpl23 1037 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
4230, 31, 32, 33, 34, 36, 37btwnexch3and 25859 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  e  Btwn  <. D , 
f >. )
43 simplll 735 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  ->  B  Btwn  <. A ,  C >. )
4443ad2antrl 709 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  B  Btwn  <. A ,  C >. )
45 simprr 734 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  ->  <. D , 
e >.Cgr <. A ,  B >. )
4645ad2antrl 709 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  <. D ,  e
>.Cgr <. A ,  B >. )
47 simprrr 742 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  <. e ,  f
>.Cgr <. B ,  C >. )
4830, 32, 33, 34, 39, 40, 41, 42, 44, 46, 47cgrextendand 25847 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  <. D ,  f
>.Cgr <. A ,  C >. )
4938, 48jca 519 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  ( D  Btwn  <.
g ,  f >.  /\  <. D ,  f
>.Cgr <. A ,  C >. ) )
50 simpl3r 1013 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N
) )
51 simplrl 737 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  ->  D  Btwn  <. F ,  g
>. )
5251ad2antrl 709 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  D  Btwn  <. F , 
g >. )
5330, 32, 50, 31, 52btwncomand 25853 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  D  Btwn  <. g ,  F >. )
54 simpllr 736 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  ->  <. A ,  C >.Cgr <. D ,  F >. )
5554ad2antrl 709 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  <. A ,  C >.Cgr
<. D ,  F >. )
5630, 39, 41, 32, 50, 55cgrcomand 25829 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  <. D ,  F >.Cgr
<. A ,  C >. )
5753, 56jca 519 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  ( D  Btwn  <.
g ,  F >.  /\ 
<. D ,  F >.Cgr <. A ,  C >. ) )
5829, 49, 573jca 1134 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  ( g  =/= 
D  /\  ( D  Btwn  <. g ,  f
>.  /\  <. D ,  f
>.Cgr <. A ,  C >. )  /\  ( D 
Btwn  <. g ,  F >.  /\  <. D ,  F >.Cgr
<. A ,  C >. ) ) )
5958ex 424 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  (
( ( ( ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. )  /\  ( D 
Btwn  <. F ,  g
>.  /\  D  =/=  g
) )  /\  ( D  Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) )  -> 
( g  =/=  D  /\  ( D  Btwn  <. g ,  f >.  /\  <. D ,  f >.Cgr <. A ,  C >. )  /\  ( D  Btwn  <. g ,  F >.  /\  <. D ,  F >.Cgr
<. A ,  C >. ) ) ) )
60 segconeq 25848 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN  /\  ( D  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  (
g  e.  ( EE
`  N )  /\  f  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  -> 
( ( g  =/= 
D  /\  ( D  Btwn  <. g ,  f
>.  /\  <. D ,  f
>.Cgr <. A ,  C >. )  /\  ( D 
Btwn  <. g ,  F >.  /\  <. D ,  F >.Cgr
<. A ,  C >. ) )  ->  f  =  F ) )
6130, 32, 39, 41, 31, 34, 50, 60syl133anc 1207 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  (
( g  =/=  D  /\  ( D  Btwn  <. g ,  f >.  /\  <. D ,  f >.Cgr <. A ,  C >. )  /\  ( D  Btwn  <. g ,  F >.  /\  <. D ,  F >.Cgr
<. A ,  C >. ) )  ->  f  =  F ) )
6259, 61syld 42 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  (
( ( ( ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. )  /\  ( D 
Btwn  <. F ,  g
>.  /\  D  =/=  g
) )  /\  ( D  Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) )  -> 
f  =  F ) )
6362imp 419 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  f  =  F )
64 opeq2 3945 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f  =  F  ->  <. g ,  f >.  =  <. g ,  F >. )
6564breq2d 4184 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  =  F  ->  (
e  Btwn  <. g ,  f >.  <->  e  Btwn  <. g ,  F >. ) )
66 opeq2 3945 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f  =  F  ->  <. e ,  f >.  =  <. e ,  F >. )
6766breq1d 4182 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  =  F  ->  ( <. e ,  f >.Cgr <. B ,  C >.  <->  <. e ,  F >.Cgr <. B ,  C >. ) )
6865, 67anbi12d 692 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  F  ->  (
( e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. )  <->  ( e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr
<. B ,  C >. ) ) )
6968biimpa 471 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f  =  F  /\  ( e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) )  -> 
( e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) )
70 simpl 444 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. )  ->  e  Btwn  <.
g ,  F >. )
71 btwnexch3 25858 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  NN  /\  ( g  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( e  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  -> 
( ( D  Btwn  <.
g ,  e >.  /\  e  Btwn  <. g ,  F >. )  ->  e  Btwn  <. D ,  F >. ) )
7230, 31, 32, 33, 50, 71syl122anc 1193 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  (
( D  Btwn  <. g ,  e >.  /\  e  Btwn  <. g ,  F >. )  ->  e  Btwn  <. D ,  F >. ) )
7335, 70, 72syl2ani 638 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  (
( ( ( ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. )  /\  ( D 
Btwn  <. F ,  g
>.  /\  D  =/=  g
) )  /\  ( D  Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) )  ->  e  Btwn  <. D ,  F >. ) )
7473imp 419 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) ) )  -> 
e  Btwn  <. D ,  F >. )
75 simplrr 738 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) )  ->  <. D , 
e >.Cgr <. A ,  B >. )
7675adantl 453 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) ) )  ->  <. D ,  e >.Cgr <. A ,  B >. )
7730, 32, 33, 39, 40, 76cgrcomand 25829 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) ) )  ->  <. A ,  B >.Cgr <. D ,  e >. )
7854ad2antrl 709 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) ) )  ->  <. A ,  C >.Cgr <. D ,  F >. )
79 simprrr 742 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) ) )  ->  <. e ,  F >.Cgr <. B ,  C >. )
8030, 33, 50, 40, 41, 79cgrcomand 25829 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) ) )  ->  <. B ,  C >.Cgr <.
e ,  F >. )
81 brcgr3 25884 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  e  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.  <->  ( <. A ,  B >.Cgr <. D , 
e >.  /\  <. A ,  C >.Cgr <. D ,  F >.  /\  <. B ,  C >.Cgr
<. e ,  F >. ) ) )
8230, 39, 40, 41, 32, 33, 50, 81syl133anc 1207 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.  <->  ( <. A ,  B >.Cgr <. D , 
e >.  /\  <. A ,  C >.Cgr <. D ,  F >.  /\  <. B ,  C >.Cgr
<. e ,  F >. ) ) )
8382adantr 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) ) )  -> 
( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.  <->  (
<. A ,  B >.Cgr <. D ,  e >.  /\ 
<. A ,  C >.Cgr <. D ,  F >.  /\ 
<. B ,  C >.Cgr <.
e ,  F >. ) ) )
8477, 78, 80, 83mpbir3and 1137 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) ) )  ->  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
8574, 84jca 519 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) ) )  -> 
( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) )
8685expr 599 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) ) )  -> 
( ( e  Btwn  <.
g ,  F >.  /\ 
<. e ,  F >.Cgr <. B ,  C >. )  ->  ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
) )
8769, 86syl5 30 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) ) )  -> 
( ( f  =  F  /\  ( e 
Btwn  <. g ,  f
>.  /\  <. e ,  f
>.Cgr <. B ,  C >. ) )  ->  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )
8887exp3acom23 1378 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) ) )  -> 
( ( e  Btwn  <.
g ,  f >.  /\  <. e ,  f
>.Cgr <. B ,  C >. )  ->  ( f  =  F  ->  ( e 
Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.
) ) ) )
8988impr 603 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  ( f  =  F  ->  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.
) ) )
9063, 89mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
)
9190expr 599 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) ) )  -> 
( ( e  Btwn  <.
g ,  f >.  /\  <. e ,  f
>.Cgr <. B ,  C >. )  ->  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.
) ) )
9226, 91sylanb 459 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  /\  f  e.  ( EE `  N
) )  /\  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) ) )  -> 
( ( e  Btwn  <.
g ,  f >.  /\  <. e ,  f
>.Cgr <. B ,  C >. )  ->  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.
) ) )
9392an32s 780 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  /\  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) ) )  /\  f  e.  ( EE `  N ) )  -> 
( ( e  Btwn  <.
g ,  f >.  /\  <. e ,  f
>.Cgr <. B ,  C >. )  ->  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.
) ) )
9493rexlimdva 2790 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  /\  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) ) )  -> 
( E. f  e.  ( EE `  N
) ( e  Btwn  <.
g ,  f >.  /\  <. e ,  f
>.Cgr <. B ,  C >. )  ->  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.
) ) )
9522, 94mpd 15 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  /\  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) ) )  -> 
( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) )
9695expr 599 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  /\  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. )  /\  ( D 
Btwn  <. F ,  g
>.  /\  D  =/=  g
) ) )  -> 
( ( D  Btwn  <.
g ,  e >.  /\  <. D ,  e
>.Cgr <. A ,  B >. )  ->  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.
) ) )
9714, 96sylanb 459 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  /\  e  e.  ( EE `  N ) )  /\  ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) ) )  ->  (
( D  Btwn  <. g ,  e >.  /\  <. D ,  e >.Cgr <. A ,  B >. )  ->  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )
9897an32s 780 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  /\  ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) ) )  /\  e  e.  ( EE `  N
) )  ->  (
( D  Btwn  <. g ,  e >.  /\  <. D ,  e >.Cgr <. A ,  B >. )  ->  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )
9998reximdva 2778 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  /\  ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) ) )  ->  ( E. e  e.  ( EE `  N ) ( D  Btwn  <. g ,  e >.  /\  <. D , 
e >.Cgr <. A ,  B >. )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
) )
10013, 99mpd 15 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  /\  ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) ) )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
)
101100expr 599 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. ) )  ->  (
( D  Btwn  <. F , 
g >.  /\  D  =/=  g )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
) )
102101an32s 780 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. ) )  /\  g  e.  ( EE `  N
) )  ->  (
( D  Btwn  <. F , 
g >.  /\  D  =/=  g )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
) )
103102rexlimdva 2790 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. ) )  ->  ( E. g  e.  ( EE `  N ) ( D  Btwn  <. F , 
g >.  /\  D  =/=  g )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
) )
1045, 103mpd 15 . 2  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. ) )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
)
105104ex 424 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  -> 
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  ->  E. e  e.  ( EE `  N ) ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   E.wrex 2667   <.cop 3777   class class class wbr 4172   ` cfv 5413   NNcn 9956   EEcee 25731    Btwn cbtwn 25732  Cgrccgr 25733  Cgr3ccgr3 25874
This theorem is referenced by:  btwnxfr  25894  lineext  25914  seglecgr12im  25948  segletr  25952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435  df-ee 25734  df-btwn 25735  df-cgr 25736  df-ofs 25821  df-cgr3 25878
  Copyright terms: Public domain W3C validator