Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cgrxfr Unicode version

Theorem cgrxfr 25237
Description: A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of [Schwabhauser] p. 35. (Contributed by Scott Fenton, 4-Oct-2013.)
Assertion
Ref Expression
cgrxfr  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  -> 
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  ->  E. e  e.  ( EE `  N ) ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )
Distinct variable groups:    A, e    B, e    C, e    D, e   
e, F    e, N

Proof of Theorem cgrxfr
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 958 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. ) )  ->  N  e.  NN )
2 simpl3r 1011 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. ) )  ->  F  e.  ( EE `  N
) )
3 simpl3l 1010 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. ) )  ->  D  e.  ( EE `  N
) )
4 btwndiff 25209 . . . 4  |-  ( ( N  e.  NN  /\  F  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  ->  E. g  e.  ( EE `  N
) ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )
51, 2, 3, 4syl3anc 1182 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. ) )  ->  E. g  e.  ( EE `  N
) ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )
6 simpl1 958 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  ->  N  e.  NN )
7 simpr 447 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  -> 
g  e.  ( EE
`  N ) )
8 simpl3l 1010 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  ->  D  e.  ( EE `  N ) )
9 simpl21 1033 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  ->  A  e.  ( EE `  N ) )
10 simpl22 1034 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  ->  B  e.  ( EE `  N ) )
11 axsegcon 25114 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( g  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  E. e  e.  ( EE `  N ) ( D  Btwn  <. g ,  e >.  /\  <. D , 
e >.Cgr <. A ,  B >. ) )
126, 7, 8, 9, 10, 11syl122anc 1191 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  ->  E. e  e.  ( EE `  N ) ( D  Btwn  <. g ,  e >.  /\  <. D , 
e >.Cgr <. A ,  B >. ) )
1312adantr 451 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  /\  ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) ) )  ->  E. e  e.  ( EE `  N
) ( D  Btwn  <.
g ,  e >.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )
14 anass 630 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  /\  e  e.  ( EE `  N ) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) ) )
15 simpl1 958 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  ->  N  e.  NN )
16 simprl 732 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  ->  g  e.  ( EE `  N
) )
17 simprr 733 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  ->  e  e.  ( EE `  N
) )
18 simpl22 1034 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
19 simpl23 1035 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
20 axsegcon 25114 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  E. f  e.  ( EE `  N ) ( e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) )
2115, 16, 17, 18, 19, 20syl122anc 1191 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  ->  E. f  e.  ( EE `  N
) ( e  Btwn  <.
g ,  f >.  /\  <. e ,  f
>.Cgr <. B ,  C >. ) )
2221adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  /\  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) ) )  ->  E. f  e.  ( EE `  N ) ( e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) )
23 anass 630 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  /\  f  e.  ( EE `  N
) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( ( g  e.  ( EE `  N
)  /\  e  e.  ( EE `  N ) )  /\  f  e.  ( EE `  N
) ) ) )
24 df-3an 936 . . . . . . . . . . . . . . . . 17  |-  ( ( g  e.  ( EE
`  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N
) )  <->  ( (
g  e.  ( EE
`  N )  /\  e  e.  ( EE `  N ) )  /\  f  e.  ( EE `  N ) ) )
2524anbi2i 675 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( ( g  e.  ( EE `  N
)  /\  e  e.  ( EE `  N ) )  /\  f  e.  ( EE `  N
) ) ) )
2623, 25bitr4i 243 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  /\  f  e.  ( EE `  N
) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) ) )
27 simplrr 737 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  ->  D  =/=  g )
2827ad2antrl 708 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  D  =/=  g
)
2928necomd 2604 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  g  =/=  D
)
30 simpl1 958 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  N  e.  NN )
31 simpr1 961 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  g  e.  ( EE `  N
) )
32 simpl3l 1010 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
33 simpr2 962 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  e  e.  ( EE `  N
) )
34 simpr3 963 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  f  e.  ( EE `  N
) )
35 simprl 732 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  ->  D  Btwn  <. g ,  e
>. )
3635ad2antrl 708 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  D  Btwn  <. g ,  e >. )
37 simprrl 740 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  e  Btwn  <. g ,  f >. )
3830, 31, 32, 33, 34, 36, 37btwnexchand 25208 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  D  Btwn  <. g ,  f >. )
39 simpl21 1033 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
40 simpl22 1034 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
41 simpl23 1035 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
4230, 31, 32, 33, 34, 36, 37btwnexch3and 25203 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  e  Btwn  <. D , 
f >. )
43 simplll 734 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  ->  B  Btwn  <. A ,  C >. )
4443ad2antrl 708 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  B  Btwn  <. A ,  C >. )
45 simprr 733 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  ->  <. D , 
e >.Cgr <. A ,  B >. )
4645ad2antrl 708 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  <. D ,  e
>.Cgr <. A ,  B >. )
47 simprrr 741 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  <. e ,  f
>.Cgr <. B ,  C >. )
4830, 32, 33, 34, 39, 40, 41, 42, 44, 46, 47cgrextendand 25191 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  <. D ,  f
>.Cgr <. A ,  C >. )
4938, 48jca 518 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  ( D  Btwn  <.
g ,  f >.  /\  <. D ,  f
>.Cgr <. A ,  C >. ) )
50 simpl3r 1011 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N
) )
51 simplrl 736 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  ->  D  Btwn  <. F ,  g
>. )
5251ad2antrl 708 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  D  Btwn  <. F , 
g >. )
5330, 32, 50, 31, 52btwncomand 25197 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  D  Btwn  <. g ,  F >. )
54 simpllr 735 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  ->  <. A ,  C >.Cgr <. D ,  F >. )
5554ad2antrl 708 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  <. A ,  C >.Cgr
<. D ,  F >. )
5630, 39, 41, 32, 50, 55cgrcomand 25173 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  <. D ,  F >.Cgr
<. A ,  C >. )
5753, 56jca 518 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  ( D  Btwn  <.
g ,  F >.  /\ 
<. D ,  F >.Cgr <. A ,  C >. ) )
5829, 49, 573jca 1132 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  ( g  =/= 
D  /\  ( D  Btwn  <. g ,  f
>.  /\  <. D ,  f
>.Cgr <. A ,  C >. )  /\  ( D 
Btwn  <. g ,  F >.  /\  <. D ,  F >.Cgr
<. A ,  C >. ) ) )
5958ex 423 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  (
( ( ( ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. )  /\  ( D 
Btwn  <. F ,  g
>.  /\  D  =/=  g
) )  /\  ( D  Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) )  -> 
( g  =/=  D  /\  ( D  Btwn  <. g ,  f >.  /\  <. D ,  f >.Cgr <. A ,  C >. )  /\  ( D  Btwn  <. g ,  F >.  /\  <. D ,  F >.Cgr
<. A ,  C >. ) ) ) )
60 segconeq 25192 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN  /\  ( D  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  (
g  e.  ( EE
`  N )  /\  f  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  -> 
( ( g  =/= 
D  /\  ( D  Btwn  <. g ,  f
>.  /\  <. D ,  f
>.Cgr <. A ,  C >. )  /\  ( D 
Btwn  <. g ,  F >.  /\  <. D ,  F >.Cgr
<. A ,  C >. ) )  ->  f  =  F ) )
6130, 32, 39, 41, 31, 34, 50, 60syl133anc 1205 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  (
( g  =/=  D  /\  ( D  Btwn  <. g ,  f >.  /\  <. D ,  f >.Cgr <. A ,  C >. )  /\  ( D  Btwn  <. g ,  F >.  /\  <. D ,  F >.Cgr
<. A ,  C >. ) )  ->  f  =  F ) )
6259, 61syld 40 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  (
( ( ( ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. )  /\  ( D 
Btwn  <. F ,  g
>.  /\  D  =/=  g
) )  /\  ( D  Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) )  -> 
f  =  F ) )
6362imp 418 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  f  =  F )
64 opeq2 3878 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f  =  F  ->  <. g ,  f >.  =  <. g ,  F >. )
6564breq2d 4116 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  =  F  ->  (
e  Btwn  <. g ,  f >.  <->  e  Btwn  <. g ,  F >. ) )
66 opeq2 3878 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f  =  F  ->  <. e ,  f >.  =  <. e ,  F >. )
6766breq1d 4114 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  =  F  ->  ( <. e ,  f >.Cgr <. B ,  C >.  <->  <. e ,  F >.Cgr <. B ,  C >. ) )
6865, 67anbi12d 691 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  F  ->  (
( e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. )  <->  ( e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr
<. B ,  C >. ) ) )
6968biimpa 470 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f  =  F  /\  ( e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) )  -> 
( e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) )
70 simpl 443 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. )  ->  e  Btwn  <.
g ,  F >. )
71 btwnexch3 25202 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  NN  /\  ( g  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( e  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  -> 
( ( D  Btwn  <.
g ,  e >.  /\  e  Btwn  <. g ,  F >. )  ->  e  Btwn  <. D ,  F >. ) )
7230, 31, 32, 33, 50, 71syl122anc 1191 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  (
( D  Btwn  <. g ,  e >.  /\  e  Btwn  <. g ,  F >. )  ->  e  Btwn  <. D ,  F >. ) )
7335, 70, 72syl2ani 637 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  (
( ( ( ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. )  /\  ( D 
Btwn  <. F ,  g
>.  /\  D  =/=  g
) )  /\  ( D  Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) )  ->  e  Btwn  <. D ,  F >. ) )
7473imp 418 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) ) )  -> 
e  Btwn  <. D ,  F >. )
75 simplrr 737 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) )  ->  <. D , 
e >.Cgr <. A ,  B >. )
7675adantl 452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) ) )  ->  <. D ,  e >.Cgr <. A ,  B >. )
7730, 32, 33, 39, 40, 76cgrcomand 25173 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) ) )  ->  <. A ,  B >.Cgr <. D ,  e >. )
7854ad2antrl 708 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) ) )  ->  <. A ,  C >.Cgr <. D ,  F >. )
79 simprrr 741 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) ) )  ->  <. e ,  F >.Cgr <. B ,  C >. )
8030, 33, 50, 40, 41, 79cgrcomand 25173 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) ) )  ->  <. B ,  C >.Cgr <.
e ,  F >. )
81 brcgr3 25228 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  e  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.  <->  ( <. A ,  B >.Cgr <. D , 
e >.  /\  <. A ,  C >.Cgr <. D ,  F >.  /\  <. B ,  C >.Cgr
<. e ,  F >. ) ) )
8230, 39, 40, 41, 32, 33, 50, 81syl133anc 1205 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.  <->  ( <. A ,  B >.Cgr <. D , 
e >.  /\  <. A ,  C >.Cgr <. D ,  F >.  /\  <. B ,  C >.Cgr
<. e ,  F >. ) ) )
8382adantr 451 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) ) )  -> 
( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.  <->  (
<. A ,  B >.Cgr <. D ,  e >.  /\ 
<. A ,  C >.Cgr <. D ,  F >.  /\ 
<. B ,  C >.Cgr <.
e ,  F >. ) ) )
8477, 78, 80, 83mpbir3and 1135 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) ) )  ->  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
8574, 84jca 518 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  F >.  /\  <. e ,  F >.Cgr <. B ,  C >. ) ) )  -> 
( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) )
8685expr 598 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) ) )  -> 
( ( e  Btwn  <.
g ,  F >.  /\ 
<. e ,  F >.Cgr <. B ,  C >. )  ->  ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
) )
8769, 86syl5 28 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) ) )  -> 
( ( f  =  F  /\  ( e 
Btwn  <. g ,  f
>.  /\  <. e ,  f
>.Cgr <. B ,  C >. ) )  ->  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )
8887exp3acom23 1372 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) ) )  -> 
( ( e  Btwn  <.
g ,  f >.  /\  <. e ,  f
>.Cgr <. B ,  C >. )  ->  ( f  =  F  ->  ( e 
Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.
) ) ) )
8988impr 602 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  ( f  =  F  ->  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.
) ) )
9063, 89mpd 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( ( B 
Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr
<. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) )  /\  (
e  Btwn  <. g ,  f >.  /\  <. e ,  f >.Cgr <. B ,  C >. ) ) )  ->  ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
)
9190expr 598 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  f  e.  ( EE `  N ) ) )  /\  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) ) )  -> 
( ( e  Btwn  <.
g ,  f >.  /\  <. e ,  f
>.Cgr <. B ,  C >. )  ->  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.
) ) )
9226, 91sylanb 458 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  /\  f  e.  ( EE `  N
) )  /\  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) ) )  -> 
( ( e  Btwn  <.
g ,  f >.  /\  <. e ,  f
>.Cgr <. B ,  C >. )  ->  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.
) ) )
9392an32s 779 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  /\  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) ) )  /\  f  e.  ( EE `  N ) )  -> 
( ( e  Btwn  <.
g ,  f >.  /\  <. e ,  f
>.Cgr <. B ,  C >. )  ->  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.
) ) )
9493rexlimdva 2743 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  /\  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) ) )  -> 
( E. f  e.  ( EE `  N
) ( e  Btwn  <.
g ,  f >.  /\  <. e ,  f
>.Cgr <. B ,  C >. )  ->  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.
) ) )
9522, 94mpd 14 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  /\  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) )  /\  ( D 
Btwn  <. g ,  e
>.  /\  <. D ,  e
>.Cgr <. A ,  B >. ) ) )  -> 
( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) )
9695expr 598 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( g  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )  /\  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. )  /\  ( D 
Btwn  <. F ,  g
>.  /\  D  =/=  g
) ) )  -> 
( ( D  Btwn  <.
g ,  e >.  /\  <. D ,  e
>.Cgr <. A ,  B >. )  ->  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.
) ) )
9714, 96sylanb 458 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  /\  e  e.  ( EE `  N ) )  /\  ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) ) )  ->  (
( D  Btwn  <. g ,  e >.  /\  <. D ,  e >.Cgr <. A ,  B >. )  ->  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )
9897an32s 779 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  /\  ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) ) )  /\  e  e.  ( EE `  N
) )  ->  (
( D  Btwn  <. g ,  e >.  /\  <. D ,  e >.Cgr <. A ,  B >. )  ->  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )
9998reximdva 2731 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  /\  ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) ) )  ->  ( E. e  e.  ( EE `  N ) ( D  Btwn  <. g ,  e >.  /\  <. D , 
e >.Cgr <. A ,  B >. )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
) )
10013, 99mpd 14 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  /\  ( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  /\  ( D  Btwn  <. F ,  g >.  /\  D  =/=  g ) ) )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
)
101100expr 598 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  g  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. ) )  ->  (
( D  Btwn  <. F , 
g >.  /\  D  =/=  g )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
) )
102101an32s 779 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. ) )  /\  g  e.  ( EE `  N
) )  ->  (
( D  Btwn  <. F , 
g >.  /\  D  =/=  g )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
) )
103102rexlimdva 2743 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. ) )  ->  ( E. g  e.  ( EE `  N ) ( D  Btwn  <. F , 
g >.  /\  D  =/=  g )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
) )
1045, 103mpd 14 . 2  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. ) )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
)
105104ex 423 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  -> 
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  ->  E. e  e.  ( EE `  N ) ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   E.wrex 2620   <.cop 3719   class class class wbr 4104   ` cfv 5337   NNcn 9836   EEcee 25075    Btwn cbtwn 25076  Cgrccgr 25077  Cgr3ccgr3 25218
This theorem is referenced by:  btwnxfr  25238  lineext  25258  seglecgr12im  25292  segletr  25296
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-oadd 6570  df-er 6747  df-map 6862  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-sup 7284  df-oi 7315  df-card 7662  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-3 9895  df-n0 10058  df-z 10117  df-uz 10323  df-rp 10447  df-ico 10754  df-icc 10755  df-fz 10875  df-fzo 10963  df-seq 11139  df-exp 11198  df-hash 11431  df-cj 11680  df-re 11681  df-im 11682  df-sqr 11816  df-abs 11817  df-clim 12058  df-sum 12256  df-ee 25078  df-btwn 25079  df-cgr 25080  df-ofs 25165  df-cgr3 25222
  Copyright terms: Public domain W3C validator