MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1 Unicode version

Theorem chebbnd1 20615
Description: The Chebyshev bound: The function π ( x ) is eventually lower bounded by a positive constant times  x  /  log ( x ). Alternatively stated, the function  ( x  /  log ( x ) )  / π ( x ) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chebbnd1  |-  ( x  e.  ( 2 [,) 
+oo )  |->  ( ( x  /  ( log `  x ) )  / 
(π `  x ) ) )  e.  O ( 1 )

Proof of Theorem chebbnd1
StepHypRef Expression
1 2re 9810 . . . . 5  |-  2  e.  RR
2 pnfxr 10450 . . . . 5  |-  +oo  e.  RR*
3 icossre 10724 . . . . 5  |-  ( ( 2  e.  RR  /\  +oo 
e.  RR* )  ->  (
2 [,)  +oo )  C_  RR )
41, 2, 3mp2an 655 . . . 4  |-  ( 2 [,)  +oo )  C_  RR
54a1i 12 . . 3  |-  (  T. 
->  ( 2 [,)  +oo )  C_  RR )
6 elicopnf 10733 . . . . . . . . . 10  |-  ( 2  e.  RR  ->  (
x  e.  ( 2 [,)  +oo )  <->  ( x  e.  RR  /\  2  <_  x ) ) )
71, 6ax-mp 10 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  <->  ( x  e.  RR  /\  2  <_  x ) )
87simplbi 448 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  x  e.  RR )
9 0re 8833 . . . . . . . . . 10  |-  0  e.  RR
109a1i 12 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  0  e.  RR )
11 1re 8832 . . . . . . . . . 10  |-  1  e.  RR
1211a1i 12 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  1  e.  RR )
13 0lt1 9291 . . . . . . . . . 10  |-  0  <  1
1413a1i 12 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  0  <  1 )
151a1i 12 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  ->  2  e.  RR )
16 1lt2 9881 . . . . . . . . . . 11  |-  1  <  2
1716a1i 12 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  ->  1  <  2 )
187simprbi 452 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  ->  2  <_  x )
1912, 15, 8, 17, 18ltletrd 8971 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  1  <  x )
2010, 12, 8, 14, 19lttrd 8972 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  0  <  x )
218, 20elrpd 10383 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  x  e.  RR+ )
228, 19rplogcld 19974 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( log `  x )  e.  RR+ )
2321, 22rpdivcld 10402 . . . . . 6  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
x  /  ( log `  x ) )  e.  RR+ )
24 ppinncl 20406 . . . . . . . 8  |-  ( ( x  e.  RR  /\  2  <_  x )  -> 
(π `  x )  e.  NN )
257, 24sylbi 189 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (π `  x )  e.  NN )
2625nnrpd 10384 . . . . . 6  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (π `  x )  e.  RR+ )
2723, 26rpdivcld 10402 . . . . 5  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( x  /  ( log `  x ) )  /  (π `  x ) )  e.  RR+ )
2827rpcnd 10387 . . . 4  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( x  /  ( log `  x ) )  /  (π `  x ) )  e.  CC )
2928adantl 454 . . 3  |-  ( (  T.  /\  x  e.  ( 2 [,)  +oo ) )  ->  (
( x  /  ( log `  x ) )  /  (π `  x ) )  e.  CC )
30 8re 9819 . . . 4  |-  8  e.  RR
3130a1i 12 . . 3  |-  (  T. 
->  8  e.  RR )
32 2rp 10354 . . . . . . . 8  |-  2  e.  RR+
33 relogcl 19926 . . . . . . . 8  |-  ( 2  e.  RR+  ->  ( log `  2 )  e.  RR )
3432, 33ax-mp 10 . . . . . . 7  |-  ( log `  2 )  e.  RR
35 ere 12364 . . . . . . . . 9  |-  _e  e.  RR
361, 35remulcli 8846 . . . . . . . 8  |-  ( 2  x.  _e )  e.  RR
37 2pos 9823 . . . . . . . . . 10  |-  0  <  2
38 epos 12479 . . . . . . . . . 10  |-  0  <  _e
391, 35, 37, 38mulgt0ii 8947 . . . . . . . . 9  |-  0  <  ( 2  x.  _e )
4036, 39gt0ne0ii 9304 . . . . . . . 8  |-  ( 2  x.  _e )  =/=  0
4136, 40rereccli 9520 . . . . . . 7  |-  ( 1  /  ( 2  x.  _e ) )  e.  RR
4234, 41resubcli 9104 . . . . . 6  |-  ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  e.  RR
431recni 8844 . . . . . . . . . . 11  |-  2  e.  CC
4443mulid1i 8834 . . . . . . . . . 10  |-  ( 2  x.  1 )  =  2
45 egt2lt3 12478 . . . . . . . . . . . . 13  |-  ( 2  <  _e  /\  _e  <  3 )
4645simpli 446 . . . . . . . . . . . 12  |-  2  <  _e
4711, 1, 35lttri 8940 . . . . . . . . . . . 12  |-  ( ( 1  <  2  /\  2  <  _e )  ->  1  <  _e )
4816, 46, 47mp2an 655 . . . . . . . . . . 11  |-  1  <  _e
4911, 35, 1ltmul2i 9673 . . . . . . . . . . . 12  |-  ( 0  <  2  ->  (
1  <  _e  <->  ( 2  x.  1 )  < 
( 2  x.  _e ) ) )
5037, 49ax-mp 10 . . . . . . . . . . 11  |-  ( 1  <  _e  <->  ( 2  x.  1 )  < 
( 2  x.  _e ) )
5148, 50mpbi 201 . . . . . . . . . 10  |-  ( 2  x.  1 )  < 
( 2  x.  _e )
5244, 51eqbrtrri 4045 . . . . . . . . 9  |-  2  <  ( 2  x.  _e )
531, 36, 37, 39ltrecii 9668 . . . . . . . . 9  |-  ( 2  <  ( 2  x.  _e )  <->  ( 1  /  ( 2  x.  _e ) )  < 
( 1  /  2
) )
5452, 53mpbi 201 . . . . . . . 8  |-  ( 1  /  ( 2  x.  _e ) )  < 
( 1  /  2
)
5545simpri 450 . . . . . . . . . . . 12  |-  _e  <  3
56 3lt4 9884 . . . . . . . . . . . 12  |-  3  <  4
57 3re 9812 . . . . . . . . . . . . 13  |-  3  e.  RR
58 4re 9814 . . . . . . . . . . . . 13  |-  4  e.  RR
5935, 57, 58lttri 8940 . . . . . . . . . . . 12  |-  ( ( _e  <  3  /\  3  <  4 )  ->  _e  <  4
)
6055, 56, 59mp2an 655 . . . . . . . . . . 11  |-  _e  <  4
61 epr 12480 . . . . . . . . . . . 12  |-  _e  e.  RR+
62 4pos 9827 . . . . . . . . . . . . 13  |-  0  <  4
6358, 62elrpii 10352 . . . . . . . . . . . 12  |-  4  e.  RR+
64 logltb 19947 . . . . . . . . . . . 12  |-  ( ( _e  e.  RR+  /\  4  e.  RR+ )  ->  (
_e  <  4  <->  ( log `  _e )  <  ( log `  4 ) ) )
6561, 63, 64mp2an 655 . . . . . . . . . . 11  |-  ( _e 
<  4  <->  ( log `  _e )  <  ( log `  4 ) )
6660, 65mpbi 201 . . . . . . . . . 10  |-  ( log `  _e )  <  ( log `  4 )
67 loge 19934 . . . . . . . . . 10  |-  ( log `  _e )  =  1
68 sq2 11193 . . . . . . . . . . . 12  |-  ( 2 ^ 2 )  =  4
6968fveq2i 5488 . . . . . . . . . . 11  |-  ( log `  ( 2 ^ 2 ) )  =  ( log `  4 )
70 2z 10049 . . . . . . . . . . . 12  |-  2  e.  ZZ
71 relogexp 19943 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR+  /\  2  e.  ZZ )  ->  ( log `  ( 2 ^ 2 ) )  =  ( 2  x.  ( log `  2 ) ) )
7232, 70, 71mp2an 655 . . . . . . . . . . 11  |-  ( log `  ( 2 ^ 2 ) )  =  ( 2  x.  ( log `  2 ) )
7369, 72eqtr3i 2306 . . . . . . . . . 10  |-  ( log `  4 )  =  ( 2  x.  ( log `  2 ) )
7466, 67, 733brtr3i 4051 . . . . . . . . 9  |-  1  <  ( 2  x.  ( log `  2 ) )
751, 37pm3.2i 443 . . . . . . . . . 10  |-  ( 2  e.  RR  /\  0  <  2 )
76 ltdivmul 9623 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( log `  2 )  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 1  /  2 )  < 
( log `  2
)  <->  1  <  (
2  x.  ( log `  2 ) ) ) )
7711, 34, 75, 76mp3an 1279 . . . . . . . . 9  |-  ( ( 1  /  2 )  <  ( log `  2
)  <->  1  <  (
2  x.  ( log `  2 ) ) )
7874, 77mpbir 202 . . . . . . . 8  |-  ( 1  /  2 )  < 
( log `  2
)
79 rehalfcl 9933 . . . . . . . . . 10  |-  ( 1  e.  RR  ->  (
1  /  2 )  e.  RR )
8011, 79ax-mp 10 . . . . . . . . 9  |-  ( 1  /  2 )  e.  RR
8141, 80, 34lttri 8940 . . . . . . . 8  |-  ( ( ( 1  /  (
2  x.  _e ) )  <  ( 1  /  2 )  /\  ( 1  /  2
)  <  ( log `  2 ) )  -> 
( 1  /  (
2  x.  _e ) )  <  ( log `  2 ) )
8254, 78, 81mp2an 655 . . . . . . 7  |-  ( 1  /  ( 2  x.  _e ) )  < 
( log `  2
)
8341, 34posdifi 9318 . . . . . . 7  |-  ( ( 1  /  ( 2  x.  _e ) )  <  ( log `  2
)  <->  0  <  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) )
8482, 83mpbi 201 . . . . . 6  |-  0  <  ( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )
8542, 84elrpii 10352 . . . . 5  |-  ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  e.  RR+
86 rerpdivcl 10376 . . . . 5  |-  ( ( 2  e.  RR  /\  ( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  e.  RR+ )  ->  (
2  /  ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) ) )  e.  RR )
871, 85, 86mp2an 655 . . . 4  |-  ( 2  /  ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) ) )  e.  RR
8887a1i 12 . . 3  |-  (  T. 
->  ( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) )  e.  RR )
89 rpre 10355 . . . . . . . 8  |-  ( ( ( x  /  ( log `  x ) )  /  (π `  x ) )  e.  RR+  ->  ( ( x  /  ( log `  x ) )  / 
(π `  x ) )  e.  RR )
90 rpge0 10361 . . . . . . . 8  |-  ( ( ( x  /  ( log `  x ) )  /  (π `  x ) )  e.  RR+  ->  0  <_ 
( ( x  / 
( log `  x
) )  /  (π `  x ) ) )
9189, 90absidd 11899 . . . . . . 7  |-  ( ( ( x  /  ( log `  x ) )  /  (π `  x ) )  e.  RR+  ->  ( abs `  ( ( x  / 
( log `  x
) )  /  (π `  x ) ) )  =  ( ( x  /  ( log `  x
) )  /  (π `  x ) ) )
9227, 91syl 17 . . . . . 6  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( abs `  ( ( x  /  ( log `  x
) )  /  (π `  x ) ) )  =  ( ( x  /  ( log `  x
) )  /  (π `  x ) ) )
9392adantr 453 . . . . 5  |-  ( ( x  e.  ( 2 [,)  +oo )  /\  8  <_  x )  ->  ( abs `  ( ( x  /  ( log `  x
) )  /  (π `  x ) ) )  =  ( ( x  /  ( log `  x
) )  /  (π `  x ) ) )
94 eqid 2284 . . . . . . . . . 10  |-  ( |_
`  ( x  / 
2 ) )  =  ( |_ `  (
x  /  2 ) )
9594chebbnd1lem3 20614 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  8  <_  x )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  /  2
)  <  ( (π `  x )  x.  (
( log `  x
)  /  x ) ) )
968, 95sylan 459 . . . . . . . 8  |-  ( ( x  e.  ( 2 [,)  +oo )  /\  8  <_  x )  ->  (
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  /  2 )  < 
( (π `  x )  x.  ( ( log `  x
)  /  x ) ) )
97 2ne0 9824 . . . . . . . . . 10  |-  2  =/=  0
9842recni 8844 . . . . . . . . . 10  |-  ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  e.  CC
9942, 84gt0ne0ii 9304 . . . . . . . . . 10  |-  ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  =/=  0
100 recdiv 9461 . . . . . . . . . 10  |-  ( ( ( 2  e.  CC  /\  2  =/=  0 )  /\  ( ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  e.  CC  /\  ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  =/=  0 ) )  -> 
( 1  /  (
2  /  ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) ) ) )  =  ( ( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  /  2 ) )
10143, 97, 98, 99, 100mp4an 656 . . . . . . . . 9  |-  ( 1  /  ( 2  / 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) )  =  ( ( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  /  2 )
102101a1i 12 . . . . . . . 8  |-  ( ( x  e.  ( 2 [,)  +oo )  /\  8  <_  x )  ->  (
1  /  ( 2  /  ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) ) ) )  =  ( ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  / 
2 ) )
10323rpcnd 10387 . . . . . . . . . . 11  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
x  /  ( log `  x ) )  e.  CC )
10425nncnd 9757 . . . . . . . . . . 11  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (π `  x )  e.  CC )
10523rpne0d 10390 . . . . . . . . . . 11  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
x  /  ( log `  x ) )  =/=  0 )
10625nnne0d 9785 . . . . . . . . . . 11  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (π `  x )  =/=  0
)
107103, 104, 105, 106recdivd 9548 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
1  /  ( ( x  /  ( log `  x ) )  / 
(π `  x ) ) )  =  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )
108104, 103, 105divrecd 9534 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
(π `  x )  / 
( x  /  ( log `  x ) ) )  =  ( (π `  x )  x.  (
1  /  ( x  /  ( log `  x
) ) ) ) )
10921rpcnne0d 10394 . . . . . . . . . . . 12  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
x  e.  CC  /\  x  =/=  0 ) )
11022rpcnne0d 10394 . . . . . . . . . . . 12  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( log `  x
)  e.  CC  /\  ( log `  x )  =/=  0 ) )
111 recdiv 9461 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( ( log `  x )  e.  CC  /\  ( log `  x
)  =/=  0 ) )  ->  ( 1  /  ( x  / 
( log `  x
) ) )  =  ( ( log `  x
)  /  x ) )
112109, 110, 111syl2anc 644 . . . . . . . . . . 11  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
1  /  ( x  /  ( log `  x
) ) )  =  ( ( log `  x
)  /  x ) )
113112oveq2d 5835 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
(π `  x )  x.  ( 1  /  (
x  /  ( log `  x ) ) ) )  =  ( (π `  x )  x.  (
( log `  x
)  /  x ) ) )
114107, 108, 1133eqtrd 2320 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
1  /  ( ( x  /  ( log `  x ) )  / 
(π `  x ) ) )  =  ( (π `  x )  x.  (
( log `  x
)  /  x ) ) )
115114adantr 453 . . . . . . . 8  |-  ( ( x  e.  ( 2 [,)  +oo )  /\  8  <_  x )  ->  (
1  /  ( ( x  /  ( log `  x ) )  / 
(π `  x ) ) )  =  ( (π `  x )  x.  (
( log `  x
)  /  x ) ) )
11696, 102, 1153brtr4d 4054 . . . . . . 7  |-  ( ( x  e.  ( 2 [,)  +oo )  /\  8  <_  x )  ->  (
1  /  ( 2  /  ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) ) ) )  <  ( 1  / 
( ( x  / 
( log `  x
) )  /  (π `  x ) ) ) )
11727adantr 453 . . . . . . . 8  |-  ( ( x  e.  ( 2 [,)  +oo )  /\  8  <_  x )  ->  (
( x  /  ( log `  x ) )  /  (π `  x ) )  e.  RR+ )
118 elrp 10351 . . . . . . . . 9  |-  ( ( ( x  /  ( log `  x ) )  /  (π `  x ) )  e.  RR+  <->  ( ( ( x  /  ( log `  x ) )  / 
(π `  x ) )  e.  RR  /\  0  <  ( ( x  / 
( log `  x
) )  /  (π `  x ) ) ) )
1191, 42, 37, 84divgt0ii 9669 . . . . . . . . . 10  |-  0  <  ( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) )
120 ltrec 9632 . . . . . . . . . 10  |-  ( ( ( ( ( x  /  ( log `  x
) )  /  (π `  x ) )  e.  RR  /\  0  < 
( ( x  / 
( log `  x
) )  /  (π `  x ) ) )  /\  ( ( 2  /  ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) ) )  e.  RR  /\  0  < 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) ) )  -> 
( ( ( x  /  ( log `  x
) )  /  (π `  x ) )  < 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) )  <->  ( 1  / 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) )  <  (
1  /  ( ( x  /  ( log `  x ) )  / 
(π `  x ) ) ) ) )
12187, 119, 120mpanr12 668 . . . . . . . . 9  |-  ( ( ( ( x  / 
( log `  x
) )  /  (π `  x ) )  e.  RR  /\  0  < 
( ( x  / 
( log `  x
) )  /  (π `  x ) ) )  ->  ( ( ( x  /  ( log `  x ) )  / 
(π `  x ) )  <  ( 2  / 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) )  <->  ( 1  / 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) )  <  (
1  /  ( ( x  /  ( log `  x ) )  / 
(π `  x ) ) ) ) )
122118, 121sylbi 189 . . . . . . . 8  |-  ( ( ( x  /  ( log `  x ) )  /  (π `  x ) )  e.  RR+  ->  ( ( ( x  /  ( log `  x ) )  /  (π `  x ) )  <  ( 2  / 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) )  <->  ( 1  / 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) )  <  (
1  /  ( ( x  /  ( log `  x ) )  / 
(π `  x ) ) ) ) )
123117, 122syl 17 . . . . . . 7  |-  ( ( x  e.  ( 2 [,)  +oo )  /\  8  <_  x )  ->  (
( ( x  / 
( log `  x
) )  /  (π `  x ) )  < 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) )  <->  ( 1  / 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) )  <  (
1  /  ( ( x  /  ( log `  x ) )  / 
(π `  x ) ) ) ) )
124116, 123mpbird 225 . . . . . 6  |-  ( ( x  e.  ( 2 [,)  +oo )  /\  8  <_  x )  ->  (
( x  /  ( log `  x ) )  /  (π `  x ) )  <  ( 2  / 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) )
125117rpred 10385 . . . . . . 7  |-  ( ( x  e.  ( 2 [,)  +oo )  /\  8  <_  x )  ->  (
( x  /  ( log `  x ) )  /  (π `  x ) )  e.  RR )
126 ltle 8905 . . . . . . 7  |-  ( ( ( ( x  / 
( log `  x
) )  /  (π `  x ) )  e.  RR  /\  ( 2  /  ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) ) )  e.  RR )  ->  (
( ( x  / 
( log `  x
) )  /  (π `  x ) )  < 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) )  ->  ( (
x  /  ( log `  x ) )  / 
(π `  x ) )  <_  ( 2  / 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) ) )
127125, 87, 126sylancl 645 . . . . . 6  |-  ( ( x  e.  ( 2 [,)  +oo )  /\  8  <_  x )  ->  (
( ( x  / 
( log `  x
) )  /  (π `  x ) )  < 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) )  ->  ( (
x  /  ( log `  x ) )  / 
(π `  x ) )  <_  ( 2  / 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) ) )
128124, 127mpd 16 . . . . 5  |-  ( ( x  e.  ( 2 [,)  +oo )  /\  8  <_  x )  ->  (
( x  /  ( log `  x ) )  /  (π `  x ) )  <_  ( 2  / 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) )
12993, 128eqbrtrd 4044 . . . 4  |-  ( ( x  e.  ( 2 [,)  +oo )  /\  8  <_  x )  ->  ( abs `  ( ( x  /  ( log `  x
) )  /  (π `  x ) ) )  <_  ( 2  / 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) )
130129adantl 454 . . 3  |-  ( (  T.  /\  ( x  e.  ( 2 [,) 
+oo )  /\  8  <_  x ) )  -> 
( abs `  (
( x  /  ( log `  x ) )  /  (π `  x ) ) )  <_  ( 2  /  ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) ) ) )
1315, 29, 31, 88, 130elo1d 12004 . 2  |-  (  T. 
->  ( x  e.  ( 2 [,)  +oo )  |->  ( ( x  / 
( log `  x
) )  /  (π `  x ) ) )  e.  O ( 1 ) )
132131trud 1316 1  |-  ( x  e.  ( 2 [,) 
+oo )  |->  ( ( x  /  ( log `  x ) )  / 
(π `  x ) ) )  e.  O ( 1 )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    T. wtru 1309    = wceq 1624    e. wcel 1685    =/= wne 2447    C_ wss 3153   class class class wbr 4024    e. cmpt 4078   ` cfv 5221  (class class class)co 5819   CCcc 8730   RRcr 8731   0cc0 8732   1c1 8733    x. cmul 8737    +oocpnf 8859   RR*cxr 8861    < clt 8862    <_ cle 8863    - cmin 9032    / cdiv 9418   NNcn 9741   2c2 9790   3c3 9791   4c4 9792   8c8 9796   ZZcz 10019   RR+crp 10349   [,)cico 10652   |_cfl 10918   ^cexp 11098   abscabs 11713   O ( 1 )co1 11954   _eceu 12338   logclog 19906  πcppi 20325
This theorem is referenced by:  chtppilimlem2  20617  chto1lb  20621
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6655  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10654  df-ioc 10655  df-ico 10656  df-icc 10657  df-fz 10777  df-fzo 10865  df-fl 10919  df-mod 10968  df-seq 11041  df-exp 11099  df-fac 11283  df-bc 11310  df-hash 11332  df-shft 11556  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-limsup 11939  df-clim 11956  df-rlim 11957  df-o1 11958  df-lo1 11959  df-sum 12153  df-ef 12343  df-e 12344  df-sin 12345  df-cos 12346  df-pi 12348  df-dvds 12526  df-gcd 12680  df-prm 12753  df-pc 12884  df-struct 13144  df-ndx 13145  df-slot 13146  df-base 13147  df-sets 13148  df-ress 13149  df-plusg 13215  df-mulr 13216  df-starv 13217  df-sca 13218  df-vsca 13219  df-tset 13221  df-ple 13222  df-ds 13224  df-hom 13226  df-cco 13227  df-rest 13321  df-topn 13322  df-topgen 13338  df-pt 13339  df-prds 13342  df-xrs 13397  df-0g 13398  df-gsum 13399  df-qtop 13404  df-imas 13405  df-xps 13407  df-mre 13482  df-mrc 13483  df-acs 13485  df-mnd 14361  df-submnd 14410  df-mulg 14486  df-cntz 14787  df-cmn 15085  df-xmet 16367  df-met 16368  df-bl 16369  df-mopn 16370  df-cnfld 16372  df-top 16630  df-bases 16632  df-topon 16633  df-topsp 16634  df-cld 16750  df-ntr 16751  df-cls 16752  df-nei 16829  df-lp 16862  df-perf 16863  df-cn 16951  df-cnp 16952  df-haus 17037  df-tx 17251  df-hmeo 17440  df-fbas 17514  df-fg 17515  df-fil 17535  df-fm 17627  df-flim 17628  df-flf 17629  df-xms 17879  df-ms 17880  df-tms 17881  df-cncf 18376  df-limc 19210  df-dv 19211  df-log 19908  df-ppi 20331
  Copyright terms: Public domain W3C validator