MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem1 Unicode version

Theorem chebbnd1lem1 20581
Description: Lemma for chebbnd1 20584: show a lower bound on π ( x ) at even integers using similar techniques to those used to prove bpos 20495. (Note that the expression  K is actually equal to  2  x.  N, but proving that is not necessary for the proof, and it's too much work.) The key to the proof is bposlem1 20486, which shows that each term in the expansion  ( (
2  x.  N )  _C  N )  = 
prod_ p  e.  Prime  ( p ^ ( p  pCnt  ( ( 2  x.  N
)  _C  N ) ) ) is at most  2  x.  N, so that the sum really only has nonzero elements up to  2  x.  N, and since each term is at most  2  x.  N, after taking logs we get the inequality π ( 2  x.  N
)  x.  log (
2  x.  N )  <_  log ( ( 2  x.  N )  _C  N ), and bclbnd 20482 finishes the proof. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2016.)
Hypothesis
Ref Expression
chebbnd1lem1.1  |-  K  =  if ( ( 2  x.  N )  <_ 
( ( 2  x.  N )  _C  N
) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N
) )
Assertion
Ref Expression
chebbnd1lem1  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 4 ^ N )  /  N
) )  <  (
(π `  ( 2  x.  N ) )  x.  ( log `  (
2  x.  N ) ) ) )

Proof of Theorem chebbnd1lem1
StepHypRef Expression
1 4nn 9847 . . . . . 6  |-  4  e.  NN
2 nnuz 10231 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
32uztrn2 10213 . . . . . . . 8  |-  ( ( 4  e.  NN  /\  N  e.  ( ZZ>= ` 
4 ) )  ->  N  e.  NN )
41, 3mpan 654 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  NN )
54nnnn0d 9986 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  NN0 )
6 nnexpcl 11083 . . . . . 6  |-  ( ( 4  e.  NN  /\  N  e.  NN0 )  -> 
( 4 ^ N
)  e.  NN )
71, 5, 6sylancr 647 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 4 ^ N )  e.  NN )
87nnrpd 10357 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 4 ^ N )  e.  RR+ )
94nnrpd 10357 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  RR+ )
108, 9rpdivcld 10375 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
4 ^ N )  /  N )  e.  RR+ )
1110relogcld 19937 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 4 ^ N )  /  N
) )  e.  RR )
12 fzctr 10821 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  ( 0 ... (
2  x.  N ) ) )
135, 12syl 17 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  ( 0 ... (
2  x.  N ) ) )
14 bccl2 11302 . . . . 5  |-  ( N  e.  ( 0 ... ( 2  x.  N
) )  ->  (
( 2  x.  N
)  _C  N )  e.  NN )
1513, 14syl 17 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  NN )
1615nnrpd 10357 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  RR+ )
1716relogcld 19937 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 2  x.  N )  _C  N
) )  e.  RR )
18 2z 10022 . . . . . . 7  |-  2  e.  ZZ
19 eluzelz 10206 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  ZZ )
20 zmulcl 10034 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  x.  N
)  e.  ZZ )
2118, 19, 20sylancr 647 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  N )  e.  ZZ )
2221zred 10085 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  N )  e.  RR )
23 ppicl 20332 . . . . 5  |-  ( ( 2  x.  N )  e.  RR  ->  (π `  ( 2  x.  N
) )  e.  NN0 )
2422, 23syl 17 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  (
2  x.  N ) )  e.  NN0 )
2524nn0red 9987 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  (
2  x.  N ) )  e.  RR )
26 2nn 9845 . . . . . 6  |-  2  e.  NN
27 nnmulcl 9737 . . . . . 6  |-  ( ( 2  e.  NN  /\  N  e.  NN )  ->  ( 2  x.  N
)  e.  NN )
2826, 4, 27sylancr 647 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  N )  e.  NN )
2928nnrpd 10357 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  N )  e.  RR+ )
3029relogcld 19937 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( 2  x.  N
) )  e.  RR )
3125, 30remulcld 8831 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  ( 2  x.  N
) )  x.  ( log `  ( 2  x.  N ) ) )  e.  RR )
32 bclbnd 20482 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
4 ^ N )  /  N )  < 
( ( 2  x.  N )  _C  N
) )
33 logltb 19916 . . . 4  |-  ( ( ( ( 4 ^ N )  /  N
)  e.  RR+  /\  (
( 2  x.  N
)  _C  N )  e.  RR+ )  ->  (
( ( 4 ^ N )  /  N
)  <  ( (
2  x.  N )  _C  N )  <->  ( log `  ( ( 4 ^ N )  /  N
) )  <  ( log `  ( ( 2  x.  N )  _C  N ) ) ) )
3410, 16, 33syl2anc 645 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
( 4 ^ N
)  /  N )  <  ( ( 2  x.  N )  _C  N )  <->  ( log `  ( ( 4 ^ N )  /  N
) )  <  ( log `  ( ( 2  x.  N )  _C  N ) ) ) )
3532, 34mpbid 203 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 4 ^ N )  /  N
) )  <  ( log `  ( ( 2  x.  N )  _C  N ) ) )
36 chebbnd1lem1.1 . . . . . . . 8  |-  K  =  if ( ( 2  x.  N )  <_ 
( ( 2  x.  N )  _C  N
) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N
) )
37 ifcl 3575 . . . . . . . . 9  |-  ( ( ( 2  x.  N
)  e.  NN  /\  ( ( 2  x.  N )  _C  N
)  e.  NN )  ->  if ( ( 2  x.  N )  <_  ( ( 2  x.  N )  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N ) )  e.  NN )
3828, 15, 37syl2anc 645 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  4
)  ->  if (
( 2  x.  N
)  <_  ( (
2  x.  N )  _C  N ) ,  ( 2  x.  N
) ,  ( ( 2  x.  N )  _C  N ) )  e.  NN )
3936, 38syl5eqel 2342 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  e.  NN )
4039nnred 9729 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  e.  RR )
41 ppicl 20332 . . . . . 6  |-  ( K  e.  RR  ->  (π `  K )  e.  NN0 )
4240, 41syl 17 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  K
)  e.  NN0 )
4342nn0red 9987 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  K
)  e.  RR )
4443, 30remulcld 8831 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) )  e.  RR )
45 fzfid 11002 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 1 ... K )  e. 
Fin )
46 inss1 3364 . . . . . 6  |-  ( ( 1 ... K )  i^i  Prime )  C_  (
1 ... K )
47 ssfi 7051 . . . . . 6  |-  ( ( ( 1 ... K
)  e.  Fin  /\  ( ( 1 ... K )  i^i  Prime ) 
C_  ( 1 ... K ) )  -> 
( ( 1 ... K )  i^i  Prime )  e.  Fin )
4845, 46, 47sylancl 646 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
1 ... K )  i^i 
Prime )  e.  Fin )
4939nnzd 10084 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  e.  ZZ )
5015nnzd 10084 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  ZZ )
5115nnred 9729 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  RR )
52 min2 10485 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  N
)  e.  RR  /\  ( ( 2  x.  N )  _C  N
)  e.  RR )  ->  if ( ( 2  x.  N )  <_  ( ( 2  x.  N )  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N ) )  <_ 
( ( 2  x.  N )  _C  N
) )
5322, 51, 52syl2anc 645 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  4
)  ->  if (
( 2  x.  N
)  <_  ( (
2  x.  N )  _C  N ) ,  ( 2  x.  N
) ,  ( ( 2  x.  N )  _C  N ) )  <_  ( ( 2  x.  N )  _C  N ) )
5436, 53syl5eqbr 4030 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  <_  ( ( 2  x.  N
)  _C  N ) )
55 eluz2 10204 . . . . . . . . . 10  |-  ( ( ( 2  x.  N
)  _C  N )  e.  ( ZZ>= `  K
)  <->  ( K  e.  ZZ  /\  ( ( 2  x.  N )  _C  N )  e.  ZZ  /\  K  <_ 
( ( 2  x.  N )  _C  N
) ) )
5649, 50, 54, 55syl3anbrc 1141 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  ( ZZ>= `  K )
)
57 fzss2 10798 . . . . . . . . 9  |-  ( ( ( 2  x.  N
)  _C  N )  e.  ( ZZ>= `  K
)  ->  ( 1 ... K )  C_  ( 1 ... (
( 2  x.  N
)  _C  N ) ) )
5856, 57syl 17 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 1 ... K )  C_  ( 1 ... (
( 2  x.  N
)  _C  N ) ) )
59 ssrin 3369 . . . . . . . 8  |-  ( ( 1 ... K ) 
C_  ( 1 ... ( ( 2  x.  N )  _C  N
) )  ->  (
( 1 ... K
)  i^i  Prime )  C_  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )
6058, 59syl 17 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
1 ... K )  i^i 
Prime )  C_  ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i  Prime ) )
6160sselda 3155 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )
62 inss1 3364 . . . . . . . . . . 11  |-  ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i  Prime )  C_  (
1 ... ( ( 2  x.  N )  _C  N ) )
63 simpr 449 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )
6462, 63sseldi 3153 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  ( 1 ... (
( 2  x.  N
)  _C  N ) ) )
65 elfznn 10786 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( ( 2  x.  N )  _C  N
) )  ->  k  e.  NN )
6664, 65syl 17 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  NN )
67 inss2 3365 . . . . . . . . . . 11  |-  ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i  Prime )  C_  Prime
6867, 63sseldi 3153 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  Prime )
6915adantr 453 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( (
2  x.  N )  _C  N )  e.  NN )
7068, 69pccld 12866 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( k  pCnt  ( ( 2  x.  N )  _C  N
) )  e.  NN0 )
7166, 70nnexpcld 11233 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  NN )
7271nnrpd 10357 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  RR+ )
7372relogcld 19937 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  e.  RR )
7461, 73syldan 458 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  e.  RR )
7530adantr 453 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( log `  ( 2  x.  N
) )  e.  RR )
76 elin 3333 . . . . . . . . 9  |-  ( k  e.  ( ( 1 ... K )  i^i 
Prime )  <->  ( k  e.  ( 1 ... K
)  /\  k  e.  Prime ) )
7776simprbi 452 . . . . . . . 8  |-  ( k  e.  ( ( 1 ... K )  i^i 
Prime )  ->  k  e. 
Prime )
78 bposlem1 20486 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  e.  Prime )  -> 
( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) )  <_  ( 2  x.  N ) )
794, 77, 78syl2an 465 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  <_  (
2  x.  N ) )
8061, 72syldan 458 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  RR+ )
8180reeflogd 19938 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( exp `  ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) ) )  =  ( k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )
8229adantr 453 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( 2  x.  N )  e.  RR+ )
8382reeflogd 19938 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( exp `  ( log `  (
2  x.  N ) ) )  =  ( 2  x.  N ) )
8479, 81, 833brtr4d 4027 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( exp `  ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) ) )  <_  ( exp `  ( log `  (
2  x.  N ) ) ) )
85 efle 12361 . . . . . . 7  |-  ( ( ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  e.  RR  /\  ( log `  ( 2  x.  N ) )  e.  RR )  -> 
( ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  <_  ( log `  ( 2  x.  N
) )  <->  ( exp `  ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) ) )  <_  ( exp `  ( log `  (
2  x.  N ) ) ) ) )
8674, 75, 85syl2anc 645 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( ( log `  ( k ^
( k  pCnt  (
( 2  x.  N
)  _C  N ) ) ) )  <_ 
( log `  (
2  x.  N ) )  <->  ( exp `  ( log `  ( k ^
( k  pCnt  (
( 2  x.  N
)  _C  N ) ) ) ) )  <_  ( exp `  ( log `  ( 2  x.  N ) ) ) ) )
8784, 86mpbird 225 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  <_  ( log `  ( 2  x.  N ) ) )
8848, 74, 75, 87fsumle 12223 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  <_  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
2  x.  N ) ) )
8973recnd 8829 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  e.  CC )
9061, 89syldan 458 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  e.  CC )
91 eldifn 3274 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i  Prime )  \  (
( 1 ... K
)  i^i  Prime ) )  ->  -.  k  e.  ( ( 1 ... K )  i^i  Prime ) )
9291adantl 454 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  -.  k  e.  ( ( 1 ... K )  i^i  Prime ) )
93 difss 3278 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  C_  (
( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )
94 simpr 449 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )
9593, 94sseldi 3153 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )
9662, 95sseldi 3153 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  ( 1 ... (
( 2  x.  N
)  _C  N ) ) )
9796, 65syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  NN )
9897adantrr 700 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  NN )
9998nnred 9729 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  RR )
10095, 71syldan 458 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  NN )
101100nnred 9729 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  RR )
102101adantrr 700 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k ^
( k  pCnt  (
( 2  x.  N
)  _C  N ) ) )  e.  RR )
10322adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( 2  x.  N )  e.  RR )
10498nncnd 9730 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  CC )
105104exp1d 11207 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k ^
1 )  =  k )
10698nnge1d 9756 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  1  <_  k
)
107 simprr 736 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  e.  NN )
108107, 2syl6eleq 2348 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  e.  ( ZZ>= ` 
1 ) )
10999, 106, 108leexp2ad 11244 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k ^
1 )  <_  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )
110105, 109eqbrtrrd 4019 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )
1114adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  N  e.  NN )
11267, 95sseldi 3153 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  Prime )
113112adantrr 700 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  Prime )
114111, 113, 78syl2anc 645 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k ^
( k  pCnt  (
( 2  x.  N
)  _C  N ) ) )  <_  (
2  x.  N ) )
11599, 102, 103, 110, 114letrd 8941 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  (
2  x.  N ) )
116 elfzle2 10767 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( 1 ... ( ( 2  x.  N )  _C  N
) )  ->  k  <_  ( ( 2  x.  N )  _C  N
) )
11796, 116syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  <_  ( ( 2  x.  N
)  _C  N ) )
118117adantrr 700 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  (
( 2  x.  N
)  _C  N ) )
11951adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( ( 2  x.  N )  _C  N )  e.  RR )
120 lemin 10487 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  e.  RR  /\  ( 2  x.  N
)  e.  RR  /\  ( ( 2  x.  N )  _C  N
)  e.  RR )  ->  ( k  <_  if ( ( 2  x.  N )  <_  (
( 2  x.  N
)  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N
)  _C  N ) )  <->  ( k  <_ 
( 2  x.  N
)  /\  k  <_  ( ( 2  x.  N
)  _C  N ) ) ) )
12199, 103, 119, 120syl3anc 1187 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k  <_  if ( ( 2  x.  N )  <_  (
( 2  x.  N
)  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N
)  _C  N ) )  <->  ( k  <_ 
( 2  x.  N
)  /\  k  <_  ( ( 2  x.  N
)  _C  N ) ) ) )
122115, 118, 121mpbir2and 893 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  if ( ( 2  x.  N )  <_  (
( 2  x.  N
)  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N
)  _C  N ) ) )
123122, 36syl6breqr 4037 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  K
)
12439adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  K  e.  NN )
125124nnzd 10084 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  K  e.  ZZ )
126 fznn 10819 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ZZ  ->  (
k  e.  ( 1 ... K )  <->  ( k  e.  NN  /\  k  <_  K ) ) )
127125, 126syl 17 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k  e.  ( 1 ... K
)  <->  ( k  e.  NN  /\  k  <_  K ) ) )
12898, 123, 127mpbir2and 893 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  ( 1 ... K ) )
129128, 113, 76sylanbrc 648 . . . . . . . . . . . . 13  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  ( ( 1 ... K
)  i^i  Prime ) )
130129expr 601 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN  ->  k  e.  ( ( 1 ... K )  i^i  Prime ) ) )
13192, 130mtod 170 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  -.  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN )
13295, 70syldan 458 . . . . . . . . . . . . 13  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k  pCnt  ( ( 2  x.  N )  _C  N
) )  e.  NN0 )
133 elnn0 9935 . . . . . . . . . . . . 13  |-  ( ( k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN0  <->  ( ( k 
pCnt  ( ( 2  x.  N )  _C  N ) )  e.  NN  \/  ( k 
pCnt  ( ( 2  x.  N )  _C  N ) )  =  0 ) )
134132, 133sylib 190 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN  \/  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  =  0 ) )
135134ord 368 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( -.  ( k  pCnt  (
( 2  x.  N
)  _C  N ) )  e.  NN  ->  ( k  pCnt  ( (
2  x.  N )  _C  N ) )  =  0 ) )
136131, 135mpd 16 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k  pCnt  ( ( 2  x.  N )  _C  N
) )  =  0 )
137136oveq2d 5808 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  =  ( k ^ 0 ) )
13897nncnd 9730 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  CC )
139138exp0d 11206 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ 0 )  =  1 )
140137, 139eqtrd 2290 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  =  1 )
141140fveq2d 5462 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  =  ( log `  1 ) )
142 log1 19902 . . . . . . 7  |-  ( log `  1 )  =  0
143141, 142syl6eq 2306 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  =  0 )
144 fzfid 11002 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 1 ... ( ( 2  x.  N )  _C  N ) )  e. 
Fin )
145 ssfi 7051 . . . . . . 7  |-  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  e.  Fin  /\  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) 
C_  ( 1 ... ( ( 2  x.  N )  _C  N
) ) )  -> 
( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime )  e.  Fin )
146144, 62, 145sylancl 646 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  e.  Fin )
14760, 90, 143, 146fsumss 12164 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  =  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) ) )
14866nnrpd 10357 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  RR+ )
14970nn0zd 10083 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( k  pCnt  ( ( 2  x.  N )  _C  N
) )  e.  ZZ )
150 relogexp 19912 . . . . . . 7  |-  ( ( k  e.  RR+  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  ZZ )  -> 
( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  =  ( ( k  pCnt  ( (
2  x.  N )  _C  N ) )  x.  ( log `  k
) ) )
151148, 149, 150syl2anc 645 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  =  ( ( k  pCnt  (
( 2  x.  N
)  _C  N ) )  x.  ( log `  k ) ) )
152151sumeq2dv 12142 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  =  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  x.  ( log `  k ) ) )
153 pclogsum 20417 . . . . . 6  |-  ( ( ( 2  x.  N
)  _C  N )  e.  NN  ->  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  x.  ( log `  k ) )  =  ( log `  (
( 2  x.  N
)  _C  N ) ) )
15415, 153syl 17 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  x.  ( log `  k ) )  =  ( log `  (
( 2  x.  N
)  _C  N ) ) )
155147, 152, 1543eqtrd 2294 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  =  ( log `  ( ( 2  x.  N )  _C  N
) ) )
15630recnd 8829 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( 2  x.  N
) )  e.  CC )
157 fsumconst 12218 . . . . . 6  |-  ( ( ( ( 1 ... K )  i^i  Prime )  e.  Fin  /\  ( log `  ( 2  x.  N ) )  e.  CC )  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
2  x.  N ) )  =  ( (
# `  ( (
1 ... K )  i^i 
Prime ) )  x.  ( log `  ( 2  x.  N ) ) ) )
15848, 156, 157syl2anc 645 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
2  x.  N ) )  =  ( (
# `  ( (
1 ... K )  i^i 
Prime ) )  x.  ( log `  ( 2  x.  N ) ) ) )
15926, 2eleqtri 2330 . . . . . . 7  |-  2  e.  ( ZZ>= `  1 )
160 ppival2g 20330 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  2  e.  ( ZZ>= ` 
1 ) )  -> 
(π `  K )  =  ( # `  (
( 1 ... K
)  i^i  Prime ) ) )
16149, 159, 160sylancl 646 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  K
)  =  ( # `  ( ( 1 ... K )  i^i  Prime ) ) )
162161oveq1d 5807 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) )  =  ( ( # `  ( ( 1 ... K )  i^i  Prime ) )  x.  ( log `  ( 2  x.  N
) ) ) )
163158, 162eqtr4d 2293 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
2  x.  N ) )  =  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) ) )
16488, 155, 1633brtr3d 4026 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 2  x.  N )  _C  N
) )  <_  (
(π `  K )  x.  ( log `  (
2  x.  N ) ) ) )
165 min1 10484 . . . . . . 7  |-  ( ( ( 2  x.  N
)  e.  RR  /\  ( ( 2  x.  N )  _C  N
)  e.  RR )  ->  if ( ( 2  x.  N )  <_  ( ( 2  x.  N )  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N ) )  <_ 
( 2  x.  N
) )
16622, 51, 165syl2anc 645 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  if (
( 2  x.  N
)  <_  ( (
2  x.  N )  _C  N ) ,  ( 2  x.  N
) ,  ( ( 2  x.  N )  _C  N ) )  <_  ( 2  x.  N ) )
16736, 166syl5eqbr 4030 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  <_  ( 2  x.  N ) )
168 ppiwordi 20363 . . . . 5  |-  ( ( K  e.  RR  /\  ( 2  x.  N
)  e.  RR  /\  K  <_  ( 2  x.  N ) )  -> 
(π `  K )  <_ 
(π `  ( 2  x.  N ) ) )
16940, 22, 167, 168syl3anc 1187 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  K
)  <_  (π `  (
2  x.  N ) ) )
170 1re 8805 . . . . . . . 8  |-  1  e.  RR
171170a1i 12 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  1  e.  RR )
172 2re 9783 . . . . . . . 8  |-  2  e.  RR
173172a1i 12 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  2  e.  RR )
174 1lt2 9854 . . . . . . . 8  |-  1  <  2
175174a1i 12 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  1  <  2 )
176 2cn 9784 . . . . . . . . 9  |-  2  e.  CC
177176mulid1i 8807 . . . . . . . 8  |-  ( 2  x.  1 )  =  2
1784nnge1d 9756 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  4
)  ->  1  <_  N )
179 eluzelre 10207 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  RR )
180 2pos 9796 . . . . . . . . . . . 12  |-  0  <  2
181172, 180pm3.2i 443 . . . . . . . . . . 11  |-  ( 2  e.  RR  /\  0  <  2 )
182181a1i 12 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  e.  RR  /\  0  <  2 ) )
183 lemul2 9577 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  N  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( 1  <_  N 
<->  ( 2  x.  1 )  <_  ( 2  x.  N ) ) )
184171, 179, 182, 183syl3anc 1187 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 1  <_  N  <->  ( 2  x.  1 )  <_ 
( 2  x.  N
) ) )
185178, 184mpbid 203 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  1 )  <_ 
( 2  x.  N
) )
186177, 185syl5eqbrr 4031 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  2  <_  ( 2  x.  N ) )
187171, 173, 22, 175, 186ltletrd 8944 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  1  <  ( 2  x.  N ) )
18822, 187rplogcld 19943 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( 2  x.  N
) )  e.  RR+ )
18943, 25, 188lemul1d 10397 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  K )  <_  (π `  ( 2  x.  N
) )  <->  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) )  <_  ( (π `  (
2  x.  N ) )  x.  ( log `  ( 2  x.  N
) ) ) ) )
190169, 189mpbid 203 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) )  <_  ( (π `  (
2  x.  N ) )  x.  ( log `  ( 2  x.  N
) ) ) )
19117, 44, 31, 164, 190letrd 8941 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 2  x.  N )  _C  N
) )  <_  (
(π `  ( 2  x.  N ) )  x.  ( log `  (
2  x.  N ) ) ) )
19211, 17, 31, 35, 191ltletrd 8944 1  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 4 ^ N )  /  N
) )  <  (
(π `  ( 2  x.  N ) )  x.  ( log `  (
2  x.  N ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    \ cdif 3124    i^i cin 3126    C_ wss 3127   ifcif 3539   class class class wbr 3997   ` cfv 4673  (class class class)co 5792   Fincfn 6831   CCcc 8703   RRcr 8704   0cc0 8705   1c1 8706    x. cmul 8710    < clt 8835    <_ cle 8836    / cdiv 9391   NNcn 9714   2c2 9763   4c4 9765   NN0cn0 9933   ZZcz 9992   ZZ>=cuz 10198   RR+crp 10322   ...cfz 10749   ^cexp 11071    _C cbc 11282   #chash 11304   sum_csu 12124   expce 12306   Primecprime 12721    pCnt cpc 12852   logclog 19875  πcppi 20294
This theorem is referenced by:  chebbnd1lem3  20583
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-map 6742  df-pm 6743  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9934  df-z 9993  df-dec 10093  df-uz 10199  df-q 10285  df-rp 10323  df-xneg 10420  df-xadd 10421  df-xmul 10422  df-ioo 10627  df-ioc 10628  df-ico 10629  df-icc 10630  df-fz 10750  df-fzo 10838  df-fl 10892  df-mod 10941  df-seq 11014  df-exp 11072  df-fac 11256  df-bc 11283  df-hash 11305  df-shft 11528  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687  df-limsup 11911  df-clim 11928  df-rlim 11929  df-sum 12125  df-ef 12312  df-sin 12314  df-cos 12315  df-pi 12317  df-divides 12495  df-gcd 12649  df-prime 12722  df-pc 12853  df-struct 13113  df-ndx 13114  df-slot 13115  df-base 13116  df-sets 13117  df-ress 13118  df-plusg 13184  df-mulr 13185  df-starv 13186  df-sca 13187  df-vsca 13188  df-tset 13190  df-ple 13191  df-ds 13193  df-hom 13195  df-cco 13196  df-rest 13290  df-topn 13291  df-topgen 13307  df-pt 13308  df-prds 13311  df-xrs 13366  df-0g 13367  df-gsum 13368  df-qtop 13373  df-imas 13374  df-xps 13376  df-mre 13451  df-mrc 13452  df-acs 13454  df-mnd 14330  df-submnd 14379  df-mulg 14455  df-cntz 14756  df-cmn 15054  df-xmet 16336  df-met 16337  df-bl 16338  df-mopn 16339  df-cnfld 16341  df-top 16599  df-bases 16601  df-topon 16602  df-topsp 16603  df-cld 16719  df-ntr 16720  df-cls 16721  df-nei 16798  df-lp 16831  df-perf 16832  df-cn 16920  df-cnp 16921  df-haus 17006  df-tx 17220  df-hmeo 17409  df-fbas 17483  df-fg 17484  df-fil 17504  df-fm 17596  df-flim 17597  df-flf 17598  df-xms 17848  df-ms 17849  df-tms 17850  df-cncf 18345  df-limc 19179  df-dv 19180  df-log 19877  df-ppi 20300
  Copyright terms: Public domain W3C validator