MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem1 Unicode version

Theorem chebbnd1lem1 20545
Description: Lemma for chebbnd1 20548: show a lower bound on π ( x ) at even integers using similar techniques to those used to prove bpos 20459. (Note that the expression  K is actually equal to  2  x.  N, but proving that is not necessary for the proof, and it's too much work.) The key to the proof is bposlem1 20450, which shows that each term in the expansion  ( (
2  x.  N )  _C  N )  = 
prod_ p  e.  Prime  ( p ^ ( p  pCnt  ( ( 2  x.  N
)  _C  N ) ) ) is at most  2  x.  N, so that the sum really only has nonzero elements up to  2  x.  N, and since each term is at most  2  x.  N, after taking logs we get the inequality π ( 2  x.  N
)  x.  log (
2  x.  N )  <_  log ( ( 2  x.  N )  _C  N ), and bclbnd 20446 finishes the proof. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2016.)
Hypothesis
Ref Expression
chebbnd1lem1.1  |-  K  =  if ( ( 2  x.  N )  <_ 
( ( 2  x.  N )  _C  N
) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N
) )
Assertion
Ref Expression
chebbnd1lem1  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 4 ^ N )  /  N
) )  <  (
(π `  ( 2  x.  N ) )  x.  ( log `  (
2  x.  N ) ) ) )

Proof of Theorem chebbnd1lem1
StepHypRef Expression
1 4nn 9811 . . . . . 6  |-  4  e.  NN
2 nnuz 10195 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
32uztrn2 10177 . . . . . . . 8  |-  ( ( 4  e.  NN  /\  N  e.  ( ZZ>= ` 
4 ) )  ->  N  e.  NN )
41, 3mpan 654 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  NN )
54nnnn0d 9950 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  NN0 )
6 nnexpcl 11047 . . . . . 6  |-  ( ( 4  e.  NN  /\  N  e.  NN0 )  -> 
( 4 ^ N
)  e.  NN )
71, 5, 6sylancr 647 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 4 ^ N )  e.  NN )
87nnrpd 10321 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 4 ^ N )  e.  RR+ )
94nnrpd 10321 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  RR+ )
108, 9rpdivcld 10339 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
4 ^ N )  /  N )  e.  RR+ )
1110relogcld 19901 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 4 ^ N )  /  N
) )  e.  RR )
12 fzctr 10785 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  ( 0 ... (
2  x.  N ) ) )
135, 12syl 17 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  ( 0 ... (
2  x.  N ) ) )
14 bccl2 11266 . . . . 5  |-  ( N  e.  ( 0 ... ( 2  x.  N
) )  ->  (
( 2  x.  N
)  _C  N )  e.  NN )
1513, 14syl 17 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  NN )
1615nnrpd 10321 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  RR+ )
1716relogcld 19901 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 2  x.  N )  _C  N
) )  e.  RR )
18 2z 9986 . . . . . . 7  |-  2  e.  ZZ
19 eluzelz 10170 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  ZZ )
20 zmulcl 9998 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  x.  N
)  e.  ZZ )
2118, 19, 20sylancr 647 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  N )  e.  ZZ )
2221zred 10049 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  N )  e.  RR )
23 ppicl 20296 . . . . 5  |-  ( ( 2  x.  N )  e.  RR  ->  (π `  ( 2  x.  N
) )  e.  NN0 )
2422, 23syl 17 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  (
2  x.  N ) )  e.  NN0 )
2524nn0red 9951 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  (
2  x.  N ) )  e.  RR )
26 2nn 9809 . . . . . 6  |-  2  e.  NN
27 nnmulcl 9702 . . . . . 6  |-  ( ( 2  e.  NN  /\  N  e.  NN )  ->  ( 2  x.  N
)  e.  NN )
2826, 4, 27sylancr 647 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  N )  e.  NN )
2928nnrpd 10321 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  N )  e.  RR+ )
3029relogcld 19901 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( 2  x.  N
) )  e.  RR )
3125, 30remulcld 8796 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  ( 2  x.  N
) )  x.  ( log `  ( 2  x.  N ) ) )  e.  RR )
32 bclbnd 20446 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
4 ^ N )  /  N )  < 
( ( 2  x.  N )  _C  N
) )
33 logltb 19880 . . . 4  |-  ( ( ( ( 4 ^ N )  /  N
)  e.  RR+  /\  (
( 2  x.  N
)  _C  N )  e.  RR+ )  ->  (
( ( 4 ^ N )  /  N
)  <  ( (
2  x.  N )  _C  N )  <->  ( log `  ( ( 4 ^ N )  /  N
) )  <  ( log `  ( ( 2  x.  N )  _C  N ) ) ) )
3410, 16, 33syl2anc 645 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
( 4 ^ N
)  /  N )  <  ( ( 2  x.  N )  _C  N )  <->  ( log `  ( ( 4 ^ N )  /  N
) )  <  ( log `  ( ( 2  x.  N )  _C  N ) ) ) )
3532, 34mpbid 203 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 4 ^ N )  /  N
) )  <  ( log `  ( ( 2  x.  N )  _C  N ) ) )
36 chebbnd1lem1.1 . . . . . . . 8  |-  K  =  if ( ( 2  x.  N )  <_ 
( ( 2  x.  N )  _C  N
) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N
) )
37 ifcl 3542 . . . . . . . . 9  |-  ( ( ( 2  x.  N
)  e.  NN  /\  ( ( 2  x.  N )  _C  N
)  e.  NN )  ->  if ( ( 2  x.  N )  <_  ( ( 2  x.  N )  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N ) )  e.  NN )
3828, 15, 37syl2anc 645 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  4
)  ->  if (
( 2  x.  N
)  <_  ( (
2  x.  N )  _C  N ) ,  ( 2  x.  N
) ,  ( ( 2  x.  N )  _C  N ) )  e.  NN )
3936, 38syl5eqel 2340 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  e.  NN )
4039nnred 9694 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  e.  RR )
41 ppicl 20296 . . . . . 6  |-  ( K  e.  RR  ->  (π `  K )  e.  NN0 )
4240, 41syl 17 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  K
)  e.  NN0 )
4342nn0red 9951 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  K
)  e.  RR )
4443, 30remulcld 8796 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) )  e.  RR )
45 fzfid 10966 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 1 ... K )  e. 
Fin )
46 inss1 3331 . . . . . 6  |-  ( ( 1 ... K )  i^i  Prime )  C_  (
1 ... K )
47 ssfi 7016 . . . . . 6  |-  ( ( ( 1 ... K
)  e.  Fin  /\  ( ( 1 ... K )  i^i  Prime ) 
C_  ( 1 ... K ) )  -> 
( ( 1 ... K )  i^i  Prime )  e.  Fin )
4845, 46, 47sylancl 646 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
1 ... K )  i^i 
Prime )  e.  Fin )
4939nnzd 10048 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  e.  ZZ )
5015nnzd 10048 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  ZZ )
5115nnred 9694 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  RR )
52 min2 10449 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  N
)  e.  RR  /\  ( ( 2  x.  N )  _C  N
)  e.  RR )  ->  if ( ( 2  x.  N )  <_  ( ( 2  x.  N )  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N ) )  <_ 
( ( 2  x.  N )  _C  N
) )
5322, 51, 52syl2anc 645 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  4
)  ->  if (
( 2  x.  N
)  <_  ( (
2  x.  N )  _C  N ) ,  ( 2  x.  N
) ,  ( ( 2  x.  N )  _C  N ) )  <_  ( ( 2  x.  N )  _C  N ) )
5436, 53syl5eqbr 3996 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  <_  ( ( 2  x.  N
)  _C  N ) )
55 eluz2 10168 . . . . . . . . . 10  |-  ( ( ( 2  x.  N
)  _C  N )  e.  ( ZZ>= `  K
)  <->  ( K  e.  ZZ  /\  ( ( 2  x.  N )  _C  N )  e.  ZZ  /\  K  <_ 
( ( 2  x.  N )  _C  N
) ) )
5649, 50, 54, 55syl3anbrc 1141 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  ( ZZ>= `  K )
)
57 fzss2 10762 . . . . . . . . 9  |-  ( ( ( 2  x.  N
)  _C  N )  e.  ( ZZ>= `  K
)  ->  ( 1 ... K )  C_  ( 1 ... (
( 2  x.  N
)  _C  N ) ) )
5856, 57syl 17 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 1 ... K )  C_  ( 1 ... (
( 2  x.  N
)  _C  N ) ) )
59 ssrin 3336 . . . . . . . 8  |-  ( ( 1 ... K ) 
C_  ( 1 ... ( ( 2  x.  N )  _C  N
) )  ->  (
( 1 ... K
)  i^i  Prime )  C_  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )
6058, 59syl 17 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
1 ... K )  i^i 
Prime )  C_  ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i  Prime ) )
6160sselda 3122 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )
62 inss1 3331 . . . . . . . . . . 11  |-  ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i  Prime )  C_  (
1 ... ( ( 2  x.  N )  _C  N ) )
63 simpr 449 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )
6462, 63sseldi 3120 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  ( 1 ... (
( 2  x.  N
)  _C  N ) ) )
65 elfznn 10750 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( ( 2  x.  N )  _C  N
) )  ->  k  e.  NN )
6664, 65syl 17 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  NN )
67 inss2 3332 . . . . . . . . . . 11  |-  ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i  Prime )  C_  Prime
6867, 63sseldi 3120 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  Prime )
6915adantr 453 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( (
2  x.  N )  _C  N )  e.  NN )
7068, 69pccld 12830 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( k  pCnt  ( ( 2  x.  N )  _C  N
) )  e.  NN0 )
7166, 70nnexpcld 11197 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  NN )
7271nnrpd 10321 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  RR+ )
7372relogcld 19901 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  e.  RR )
7461, 73syldan 458 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  e.  RR )
7530adantr 453 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( log `  ( 2  x.  N
) )  e.  RR )
76 elin 3300 . . . . . . . . 9  |-  ( k  e.  ( ( 1 ... K )  i^i 
Prime )  <->  ( k  e.  ( 1 ... K
)  /\  k  e.  Prime ) )
7776simprbi 452 . . . . . . . 8  |-  ( k  e.  ( ( 1 ... K )  i^i 
Prime )  ->  k  e. 
Prime )
78 bposlem1 20450 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  e.  Prime )  -> 
( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) )  <_  ( 2  x.  N ) )
794, 77, 78syl2an 465 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  <_  (
2  x.  N ) )
8061, 72syldan 458 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  RR+ )
8180reeflogd 19902 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( exp `  ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) ) )  =  ( k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )
8229adantr 453 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( 2  x.  N )  e.  RR+ )
8382reeflogd 19902 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( exp `  ( log `  (
2  x.  N ) ) )  =  ( 2  x.  N ) )
8479, 81, 833brtr4d 3993 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( exp `  ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) ) )  <_  ( exp `  ( log `  (
2  x.  N ) ) ) )
85 efle 12325 . . . . . . 7  |-  ( ( ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  e.  RR  /\  ( log `  ( 2  x.  N ) )  e.  RR )  -> 
( ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  <_  ( log `  ( 2  x.  N
) )  <->  ( exp `  ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) ) )  <_  ( exp `  ( log `  (
2  x.  N ) ) ) ) )
8674, 75, 85syl2anc 645 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( ( log `  ( k ^
( k  pCnt  (
( 2  x.  N
)  _C  N ) ) ) )  <_ 
( log `  (
2  x.  N ) )  <->  ( exp `  ( log `  ( k ^
( k  pCnt  (
( 2  x.  N
)  _C  N ) ) ) ) )  <_  ( exp `  ( log `  ( 2  x.  N ) ) ) ) )
8784, 86mpbird 225 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  <_  ( log `  ( 2  x.  N ) ) )
8848, 74, 75, 87fsumle 12187 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  <_  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
2  x.  N ) ) )
8973recnd 8794 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  e.  CC )
9061, 89syldan 458 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  e.  CC )
91 eldifn 3241 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i  Prime )  \  (
( 1 ... K
)  i^i  Prime ) )  ->  -.  k  e.  ( ( 1 ... K )  i^i  Prime ) )
9291adantl 454 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  -.  k  e.  ( ( 1 ... K )  i^i  Prime ) )
93 difss 3245 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  C_  (
( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )
94 simpr 449 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )
9593, 94sseldi 3120 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )
9662, 95sseldi 3120 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  ( 1 ... (
( 2  x.  N
)  _C  N ) ) )
9796, 65syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  NN )
9897adantrr 700 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  NN )
9998nnred 9694 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  RR )
10095, 71syldan 458 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  NN )
101100nnred 9694 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  RR )
102101adantrr 700 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k ^
( k  pCnt  (
( 2  x.  N
)  _C  N ) ) )  e.  RR )
10322adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( 2  x.  N )  e.  RR )
10498nncnd 9695 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  CC )
105104exp1d 11171 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k ^
1 )  =  k )
10698nnge1d 9721 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  1  <_  k
)
107 simprr 736 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  e.  NN )
108107, 2syl6eleq 2346 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  e.  ( ZZ>= ` 
1 ) )
10999, 106, 108leexp2ad 11208 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k ^
1 )  <_  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )
110105, 109eqbrtrrd 3985 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )
1114adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  N  e.  NN )
11267, 95sseldi 3120 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  Prime )
113112adantrr 700 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  Prime )
114111, 113, 78syl2anc 645 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k ^
( k  pCnt  (
( 2  x.  N
)  _C  N ) ) )  <_  (
2  x.  N ) )
11599, 102, 103, 110, 114letrd 8906 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  (
2  x.  N ) )
116 elfzle2 10731 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( 1 ... ( ( 2  x.  N )  _C  N
) )  ->  k  <_  ( ( 2  x.  N )  _C  N
) )
11796, 116syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  <_  ( ( 2  x.  N
)  _C  N ) )
118117adantrr 700 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  (
( 2  x.  N
)  _C  N ) )
11951adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( ( 2  x.  N )  _C  N )  e.  RR )
120 lemin 10451 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  e.  RR  /\  ( 2  x.  N
)  e.  RR  /\  ( ( 2  x.  N )  _C  N
)  e.  RR )  ->  ( k  <_  if ( ( 2  x.  N )  <_  (
( 2  x.  N
)  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N
)  _C  N ) )  <->  ( k  <_ 
( 2  x.  N
)  /\  k  <_  ( ( 2  x.  N
)  _C  N ) ) ) )
12199, 103, 119, 120syl3anc 1187 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k  <_  if ( ( 2  x.  N )  <_  (
( 2  x.  N
)  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N
)  _C  N ) )  <->  ( k  <_ 
( 2  x.  N
)  /\  k  <_  ( ( 2  x.  N
)  _C  N ) ) ) )
122115, 118, 121mpbir2and 893 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  if ( ( 2  x.  N )  <_  (
( 2  x.  N
)  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N
)  _C  N ) ) )
123122, 36syl6breqr 4003 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  K
)
12439adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  K  e.  NN )
125124nnzd 10048 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  K  e.  ZZ )
126 fznn 10783 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ZZ  ->  (
k  e.  ( 1 ... K )  <->  ( k  e.  NN  /\  k  <_  K ) ) )
127125, 126syl 17 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k  e.  ( 1 ... K
)  <->  ( k  e.  NN  /\  k  <_  K ) ) )
12898, 123, 127mpbir2and 893 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  ( 1 ... K ) )
129128, 113, 76sylanbrc 648 . . . . . . . . . . . . 13  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  ( ( 1 ... K
)  i^i  Prime ) )
130129expr 601 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN  ->  k  e.  ( ( 1 ... K )  i^i  Prime ) ) )
13192, 130mtod 170 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  -.  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN )
13295, 70syldan 458 . . . . . . . . . . . . 13  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k  pCnt  ( ( 2  x.  N )  _C  N
) )  e.  NN0 )
133 elnn0 9899 . . . . . . . . . . . . 13  |-  ( ( k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN0  <->  ( ( k 
pCnt  ( ( 2  x.  N )  _C  N ) )  e.  NN  \/  ( k 
pCnt  ( ( 2  x.  N )  _C  N ) )  =  0 ) )
134132, 133sylib 190 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN  \/  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  =  0 ) )
135134ord 368 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( -.  ( k  pCnt  (
( 2  x.  N
)  _C  N ) )  e.  NN  ->  ( k  pCnt  ( (
2  x.  N )  _C  N ) )  =  0 ) )
136131, 135mpd 16 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k  pCnt  ( ( 2  x.  N )  _C  N
) )  =  0 )
137136oveq2d 5773 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  =  ( k ^ 0 ) )
13897nncnd 9695 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  CC )
139138exp0d 11170 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ 0 )  =  1 )
140137, 139eqtrd 2288 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  =  1 )
141140fveq2d 5427 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  =  ( log `  1 ) )
142 log1 19866 . . . . . . 7  |-  ( log `  1 )  =  0
143141, 142syl6eq 2304 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  =  0 )
144 fzfid 10966 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 1 ... ( ( 2  x.  N )  _C  N ) )  e. 
Fin )
145 ssfi 7016 . . . . . . 7  |-  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  e.  Fin  /\  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) 
C_  ( 1 ... ( ( 2  x.  N )  _C  N
) ) )  -> 
( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime )  e.  Fin )
146144, 62, 145sylancl 646 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  e.  Fin )
14760, 90, 143, 146fsumss 12128 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  =  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) ) )
14866nnrpd 10321 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  RR+ )
14970nn0zd 10047 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( k  pCnt  ( ( 2  x.  N )  _C  N
) )  e.  ZZ )
150 relogexp 19876 . . . . . . 7  |-  ( ( k  e.  RR+  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  ZZ )  -> 
( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  =  ( ( k  pCnt  ( (
2  x.  N )  _C  N ) )  x.  ( log `  k
) ) )
151148, 149, 150syl2anc 645 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  =  ( ( k  pCnt  (
( 2  x.  N
)  _C  N ) )  x.  ( log `  k ) ) )
152151sumeq2dv 12106 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  =  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  x.  ( log `  k ) ) )
153 pclogsum 20381 . . . . . 6  |-  ( ( ( 2  x.  N
)  _C  N )  e.  NN  ->  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  x.  ( log `  k ) )  =  ( log `  (
( 2  x.  N
)  _C  N ) ) )
15415, 153syl 17 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  x.  ( log `  k ) )  =  ( log `  (
( 2  x.  N
)  _C  N ) ) )
155147, 152, 1543eqtrd 2292 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  =  ( log `  ( ( 2  x.  N )  _C  N
) ) )
15630recnd 8794 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( 2  x.  N
) )  e.  CC )
157 fsumconst 12182 . . . . . 6  |-  ( ( ( ( 1 ... K )  i^i  Prime )  e.  Fin  /\  ( log `  ( 2  x.  N ) )  e.  CC )  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
2  x.  N ) )  =  ( (
# `  ( (
1 ... K )  i^i 
Prime ) )  x.  ( log `  ( 2  x.  N ) ) ) )
15848, 156, 157syl2anc 645 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
2  x.  N ) )  =  ( (
# `  ( (
1 ... K )  i^i 
Prime ) )  x.  ( log `  ( 2  x.  N ) ) ) )
15926, 2eleqtri 2328 . . . . . . 7  |-  2  e.  ( ZZ>= `  1 )
160 ppival2g 20294 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  2  e.  ( ZZ>= ` 
1 ) )  -> 
(π `  K )  =  ( # `  (
( 1 ... K
)  i^i  Prime ) ) )
16149, 159, 160sylancl 646 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  K
)  =  ( # `  ( ( 1 ... K )  i^i  Prime ) ) )
162161oveq1d 5772 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) )  =  ( ( # `  ( ( 1 ... K )  i^i  Prime ) )  x.  ( log `  ( 2  x.  N
) ) ) )
163158, 162eqtr4d 2291 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
2  x.  N ) )  =  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) ) )
16488, 155, 1633brtr3d 3992 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 2  x.  N )  _C  N
) )  <_  (
(π `  K )  x.  ( log `  (
2  x.  N ) ) ) )
165 min1 10448 . . . . . . 7  |-  ( ( ( 2  x.  N
)  e.  RR  /\  ( ( 2  x.  N )  _C  N
)  e.  RR )  ->  if ( ( 2  x.  N )  <_  ( ( 2  x.  N )  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N ) )  <_ 
( 2  x.  N
) )
16622, 51, 165syl2anc 645 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  if (
( 2  x.  N
)  <_  ( (
2  x.  N )  _C  N ) ,  ( 2  x.  N
) ,  ( ( 2  x.  N )  _C  N ) )  <_  ( 2  x.  N ) )
16736, 166syl5eqbr 3996 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  <_  ( 2  x.  N ) )
168 ppiwordi 20327 . . . . 5  |-  ( ( K  e.  RR  /\  ( 2  x.  N
)  e.  RR  /\  K  <_  ( 2  x.  N ) )  -> 
(π `  K )  <_ 
(π `  ( 2  x.  N ) ) )
16940, 22, 167, 168syl3anc 1187 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  K
)  <_  (π `  (
2  x.  N ) ) )
170 1re 8770 . . . . . . . 8  |-  1  e.  RR
171170a1i 12 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  1  e.  RR )
172 2re 9748 . . . . . . . 8  |-  2  e.  RR
173172a1i 12 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  2  e.  RR )
174 1lt2 9818 . . . . . . . 8  |-  1  <  2
175174a1i 12 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  1  <  2 )
176 2cn 9749 . . . . . . . . 9  |-  2  e.  CC
177176mulid1i 8772 . . . . . . . 8  |-  ( 2  x.  1 )  =  2
1784nnge1d 9721 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  4
)  ->  1  <_  N )
179 eluzelre 10171 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  RR )
180 2pos 9761 . . . . . . . . . . . 12  |-  0  <  2
181172, 180pm3.2i 443 . . . . . . . . . . 11  |-  ( 2  e.  RR  /\  0  <  2 )
182181a1i 12 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  e.  RR  /\  0  <  2 ) )
183 lemul2 9542 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  N  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( 1  <_  N 
<->  ( 2  x.  1 )  <_  ( 2  x.  N ) ) )
184171, 179, 182, 183syl3anc 1187 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 1  <_  N  <->  ( 2  x.  1 )  <_ 
( 2  x.  N
) ) )
185178, 184mpbid 203 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  1 )  <_ 
( 2  x.  N
) )
186177, 185syl5eqbrr 3997 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  2  <_  ( 2  x.  N ) )
187171, 173, 22, 175, 186ltletrd 8909 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  1  <  ( 2  x.  N ) )
18822, 187rplogcld 19907 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( 2  x.  N
) )  e.  RR+ )
18943, 25, 188lemul1d 10361 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  K )  <_  (π `  ( 2  x.  N
) )  <->  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) )  <_  ( (π `  (
2  x.  N ) )  x.  ( log `  ( 2  x.  N
) ) ) ) )
190169, 189mpbid 203 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) )  <_  ( (π `  (
2  x.  N ) )  x.  ( log `  ( 2  x.  N
) ) ) )
19117, 44, 31, 164, 190letrd 8906 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 2  x.  N )  _C  N
) )  <_  (
(π `  ( 2  x.  N ) )  x.  ( log `  (
2  x.  N ) ) ) )
19211, 17, 31, 35, 191ltletrd 8909 1  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 4 ^ N )  /  N
) )  <  (
(π `  ( 2  x.  N ) )  x.  ( log `  (
2  x.  N ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    \ cdif 3091    i^i cin 3093    C_ wss 3094   ifcif 3506   class class class wbr 3963   ` cfv 4638  (class class class)co 5757   Fincfn 6796   CCcc 8668   RRcr 8669   0cc0 8670   1c1 8671    x. cmul 8675    < clt 8800    <_ cle 8801    / cdiv 9356   NNcn 9679   2c2 9728   4c4 9730   NN0cn0 9897   ZZcz 9956   ZZ>=cuz 10162   RR+crp 10286   ...cfz 10713   ^cexp 11035    _C cbc 11246   #chash 11268   sum_csu 12088   expce 12270   Primecprime 12685    pCnt cpc 12816   logclog 19839  πcppi 20258
This theorem is referenced by:  chebbnd1lem3  20547
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-addf 8749  ax-mulf 8750
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-of 5977  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-2o 6413  df-oadd 6416  df-er 6593  df-map 6707  df-pm 6708  df-ixp 6751  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-fi 7098  df-sup 7127  df-oi 7158  df-card 7505  df-cda 7727  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-7 9742  df-8 9743  df-9 9744  df-10 9745  df-n0 9898  df-z 9957  df-dec 10057  df-uz 10163  df-q 10249  df-rp 10287  df-xneg 10384  df-xadd 10385  df-xmul 10386  df-ioo 10591  df-ioc 10592  df-ico 10593  df-icc 10594  df-fz 10714  df-fzo 10802  df-fl 10856  df-mod 10905  df-seq 10978  df-exp 11036  df-fac 11220  df-bc 11247  df-hash 11269  df-shft 11492  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-limsup 11875  df-clim 11892  df-rlim 11893  df-sum 12089  df-ef 12276  df-sin 12278  df-cos 12279  df-pi 12281  df-divides 12459  df-gcd 12613  df-prime 12686  df-pc 12817  df-struct 13077  df-ndx 13078  df-slot 13079  df-base 13080  df-sets 13081  df-ress 13082  df-plusg 13148  df-mulr 13149  df-starv 13150  df-sca 13151  df-vsca 13152  df-tset 13154  df-ple 13155  df-ds 13157  df-hom 13159  df-cco 13160  df-rest 13254  df-topn 13255  df-topgen 13271  df-pt 13272  df-prds 13275  df-xrs 13330  df-0g 13331  df-gsum 13332  df-qtop 13337  df-imas 13338  df-xps 13340  df-mre 13415  df-mrc 13416  df-acs 13418  df-mnd 14294  df-submnd 14343  df-mulg 14419  df-cntz 14720  df-cmn 15018  df-xmet 16300  df-met 16301  df-bl 16302  df-mopn 16303  df-cnfld 16305  df-top 16563  df-bases 16565  df-topon 16566  df-topsp 16567  df-cld 16683  df-ntr 16684  df-cls 16685  df-nei 16762  df-lp 16795  df-perf 16796  df-cn 16884  df-cnp 16885  df-haus 16970  df-tx 17184  df-hmeo 17373  df-fbas 17447  df-fg 17448  df-fil 17468  df-fm 17560  df-flim 17561  df-flf 17562  df-xms 17812  df-ms 17813  df-tms 17814  df-cncf 18309  df-limc 19143  df-dv 19144  df-log 19841  df-ppi 20264
  Copyright terms: Public domain W3C validator