MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem1 Unicode version

Theorem chebbnd1lem1 20841
Description: Lemma for chebbnd1 20844: show a lower bound on π ( x ) at even integers using similar techniques to those used to prove bpos 20755. (Note that the expression  K is actually equal to  2  x.  N, but proving that is not necessary for the proof, and it's too much work.) The key to the proof is bposlem1 20746, which shows that each term in the expansion  ( (
2  x.  N )  _C  N )  = 
prod_ p  e.  Prime  ( p ^ ( p  pCnt  ( ( 2  x.  N
)  _C  N ) ) ) is at most  2  x.  N, so that the sum really only has nonzero elements up to  2  x.  N, and since each term is at most  2  x.  N, after taking logs we get the inequality π ( 2  x.  N
)  x.  log (
2  x.  N )  <_  log ( ( 2  x.  N )  _C  N ), and bclbnd 20742 finishes the proof. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2016.)
Hypothesis
Ref Expression
chebbnd1lem1.1  |-  K  =  if ( ( 2  x.  N )  <_ 
( ( 2  x.  N )  _C  N
) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N
) )
Assertion
Ref Expression
chebbnd1lem1  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 4 ^ N )  /  N
) )  <  (
(π `  ( 2  x.  N ) )  x.  ( log `  (
2  x.  N ) ) ) )

Proof of Theorem chebbnd1lem1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 4nn 10028 . . . . . 6  |-  4  e.  NN
2 nnuz 10414 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
32uztrn2 10396 . . . . . . . 8  |-  ( ( 4  e.  NN  /\  N  e.  ( ZZ>= ` 
4 ) )  ->  N  e.  NN )
41, 3mpan 651 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  NN )
54nnnn0d 10167 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  NN0 )
6 nnexpcl 11281 . . . . . 6  |-  ( ( 4  e.  NN  /\  N  e.  NN0 )  -> 
( 4 ^ N
)  e.  NN )
71, 5, 6sylancr 644 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 4 ^ N )  e.  NN )
87nnrpd 10540 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 4 ^ N )  e.  RR+ )
94nnrpd 10540 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  RR+ )
108, 9rpdivcld 10558 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
4 ^ N )  /  N )  e.  RR+ )
1110relogcld 20196 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 4 ^ N )  /  N
) )  e.  RR )
12 fzctr 11007 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  ( 0 ... (
2  x.  N ) ) )
135, 12syl 15 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  ( 0 ... (
2  x.  N ) ) )
14 bccl2 11501 . . . . 5  |-  ( N  e.  ( 0 ... ( 2  x.  N
) )  ->  (
( 2  x.  N
)  _C  N )  e.  NN )
1513, 14syl 15 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  NN )
1615nnrpd 10540 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  RR+ )
1716relogcld 20196 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 2  x.  N )  _C  N
) )  e.  RR )
18 2z 10205 . . . . . . 7  |-  2  e.  ZZ
19 eluzelz 10389 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  ZZ )
20 zmulcl 10217 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  x.  N
)  e.  ZZ )
2118, 19, 20sylancr 644 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  N )  e.  ZZ )
2221zred 10268 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  N )  e.  RR )
23 ppicl 20592 . . . . 5  |-  ( ( 2  x.  N )  e.  RR  ->  (π `  ( 2  x.  N
) )  e.  NN0 )
2422, 23syl 15 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  (
2  x.  N ) )  e.  NN0 )
2524nn0red 10168 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  (
2  x.  N ) )  e.  RR )
26 2nn 10026 . . . . . 6  |-  2  e.  NN
27 nnmulcl 9916 . . . . . 6  |-  ( ( 2  e.  NN  /\  N  e.  NN )  ->  ( 2  x.  N
)  e.  NN )
2826, 4, 27sylancr 644 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  N )  e.  NN )
2928nnrpd 10540 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  N )  e.  RR+ )
3029relogcld 20196 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( 2  x.  N
) )  e.  RR )
3125, 30remulcld 9010 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  ( 2  x.  N
) )  x.  ( log `  ( 2  x.  N ) ) )  e.  RR )
32 bclbnd 20742 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
4 ^ N )  /  N )  < 
( ( 2  x.  N )  _C  N
) )
33 logltb 20172 . . . 4  |-  ( ( ( ( 4 ^ N )  /  N
)  e.  RR+  /\  (
( 2  x.  N
)  _C  N )  e.  RR+ )  ->  (
( ( 4 ^ N )  /  N
)  <  ( (
2  x.  N )  _C  N )  <->  ( log `  ( ( 4 ^ N )  /  N
) )  <  ( log `  ( ( 2  x.  N )  _C  N ) ) ) )
3410, 16, 33syl2anc 642 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
( 4 ^ N
)  /  N )  <  ( ( 2  x.  N )  _C  N )  <->  ( log `  ( ( 4 ^ N )  /  N
) )  <  ( log `  ( ( 2  x.  N )  _C  N ) ) ) )
3532, 34mpbid 201 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 4 ^ N )  /  N
) )  <  ( log `  ( ( 2  x.  N )  _C  N ) ) )
36 chebbnd1lem1.1 . . . . . . . 8  |-  K  =  if ( ( 2  x.  N )  <_ 
( ( 2  x.  N )  _C  N
) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N
) )
37 ifcl 3690 . . . . . . . . 9  |-  ( ( ( 2  x.  N
)  e.  NN  /\  ( ( 2  x.  N )  _C  N
)  e.  NN )  ->  if ( ( 2  x.  N )  <_  ( ( 2  x.  N )  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N ) )  e.  NN )
3828, 15, 37syl2anc 642 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  4
)  ->  if (
( 2  x.  N
)  <_  ( (
2  x.  N )  _C  N ) ,  ( 2  x.  N
) ,  ( ( 2  x.  N )  _C  N ) )  e.  NN )
3936, 38syl5eqel 2450 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  e.  NN )
4039nnred 9908 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  e.  RR )
41 ppicl 20592 . . . . . 6  |-  ( K  e.  RR  ->  (π `  K )  e.  NN0 )
4240, 41syl 15 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  K
)  e.  NN0 )
4342nn0red 10168 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  K
)  e.  RR )
4443, 30remulcld 9010 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) )  e.  RR )
45 fzfid 11199 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 1 ... K )  e. 
Fin )
46 inss1 3477 . . . . . 6  |-  ( ( 1 ... K )  i^i  Prime )  C_  (
1 ... K )
47 ssfi 7226 . . . . . 6  |-  ( ( ( 1 ... K
)  e.  Fin  /\  ( ( 1 ... K )  i^i  Prime ) 
C_  ( 1 ... K ) )  -> 
( ( 1 ... K )  i^i  Prime )  e.  Fin )
4845, 46, 47sylancl 643 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
1 ... K )  i^i 
Prime )  e.  Fin )
4939nnzd 10267 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  e.  ZZ )
5015nnzd 10267 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  ZZ )
5115nnred 9908 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  RR )
52 min2 10670 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  N
)  e.  RR  /\  ( ( 2  x.  N )  _C  N
)  e.  RR )  ->  if ( ( 2  x.  N )  <_  ( ( 2  x.  N )  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N ) )  <_ 
( ( 2  x.  N )  _C  N
) )
5322, 51, 52syl2anc 642 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  4
)  ->  if (
( 2  x.  N
)  <_  ( (
2  x.  N )  _C  N ) ,  ( 2  x.  N
) ,  ( ( 2  x.  N )  _C  N ) )  <_  ( ( 2  x.  N )  _C  N ) )
5436, 53syl5eqbr 4158 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  <_  ( ( 2  x.  N
)  _C  N ) )
55 eluz2 10387 . . . . . . . . . 10  |-  ( ( ( 2  x.  N
)  _C  N )  e.  ( ZZ>= `  K
)  <->  ( K  e.  ZZ  /\  ( ( 2  x.  N )  _C  N )  e.  ZZ  /\  K  <_ 
( ( 2  x.  N )  _C  N
) ) )
5649, 50, 54, 55syl3anbrc 1137 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  ( ZZ>= `  K )
)
57 fzss2 10984 . . . . . . . . 9  |-  ( ( ( 2  x.  N
)  _C  N )  e.  ( ZZ>= `  K
)  ->  ( 1 ... K )  C_  ( 1 ... (
( 2  x.  N
)  _C  N ) ) )
5856, 57syl 15 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 1 ... K )  C_  ( 1 ... (
( 2  x.  N
)  _C  N ) ) )
59 ssrin 3482 . . . . . . . 8  |-  ( ( 1 ... K ) 
C_  ( 1 ... ( ( 2  x.  N )  _C  N
) )  ->  (
( 1 ... K
)  i^i  Prime )  C_  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )
6058, 59syl 15 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
1 ... K )  i^i 
Prime )  C_  ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i  Prime ) )
6160sselda 3266 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )
62 inss1 3477 . . . . . . . . . . 11  |-  ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i  Prime )  C_  (
1 ... ( ( 2  x.  N )  _C  N ) )
63 simpr 447 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )
6462, 63sseldi 3264 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  ( 1 ... (
( 2  x.  N
)  _C  N ) ) )
65 elfznn 10972 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( ( 2  x.  N )  _C  N
) )  ->  k  e.  NN )
6664, 65syl 15 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  NN )
67 inss2 3478 . . . . . . . . . . 11  |-  ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i  Prime )  C_  Prime
6867, 63sseldi 3264 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  Prime )
6915adantr 451 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( (
2  x.  N )  _C  N )  e.  NN )
7068, 69pccld 13111 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( k  pCnt  ( ( 2  x.  N )  _C  N
) )  e.  NN0 )
7166, 70nnexpcld 11431 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  NN )
7271nnrpd 10540 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  RR+ )
7372relogcld 20196 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  e.  RR )
7461, 73syldan 456 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  e.  RR )
7530adantr 451 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( log `  ( 2  x.  N
) )  e.  RR )
76 elin 3446 . . . . . . . . 9  |-  ( k  e.  ( ( 1 ... K )  i^i 
Prime )  <->  ( k  e.  ( 1 ... K
)  /\  k  e.  Prime ) )
7776simprbi 450 . . . . . . . 8  |-  ( k  e.  ( ( 1 ... K )  i^i 
Prime )  ->  k  e. 
Prime )
78 bposlem1 20746 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  e.  Prime )  -> 
( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) )  <_  ( 2  x.  N ) )
794, 77, 78syl2an 463 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  <_  (
2  x.  N ) )
8061, 72syldan 456 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  RR+ )
8180reeflogd 20197 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( exp `  ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) ) )  =  ( k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )
8229adantr 451 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( 2  x.  N )  e.  RR+ )
8382reeflogd 20197 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( exp `  ( log `  (
2  x.  N ) ) )  =  ( 2  x.  N ) )
8479, 81, 833brtr4d 4155 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( exp `  ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) ) )  <_  ( exp `  ( log `  (
2  x.  N ) ) ) )
85 efle 12606 . . . . . . 7  |-  ( ( ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  e.  RR  /\  ( log `  ( 2  x.  N ) )  e.  RR )  -> 
( ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  <_  ( log `  ( 2  x.  N
) )  <->  ( exp `  ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) ) )  <_  ( exp `  ( log `  (
2  x.  N ) ) ) ) )
8674, 75, 85syl2anc 642 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( ( log `  ( k ^
( k  pCnt  (
( 2  x.  N
)  _C  N ) ) ) )  <_ 
( log `  (
2  x.  N ) )  <->  ( exp `  ( log `  ( k ^
( k  pCnt  (
( 2  x.  N
)  _C  N ) ) ) ) )  <_  ( exp `  ( log `  ( 2  x.  N ) ) ) ) )
8784, 86mpbird 223 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  <_  ( log `  ( 2  x.  N ) ) )
8848, 74, 75, 87fsumle 12465 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  <_  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
2  x.  N ) ) )
8973recnd 9008 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  e.  CC )
9061, 89syldan 456 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  e.  CC )
91 eldifn 3386 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i  Prime )  \  (
( 1 ... K
)  i^i  Prime ) )  ->  -.  k  e.  ( ( 1 ... K )  i^i  Prime ) )
9291adantl 452 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  -.  k  e.  ( ( 1 ... K )  i^i  Prime ) )
93 difss 3390 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  C_  (
( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )
94 simpr 447 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )
9593, 94sseldi 3264 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )
9662, 95sseldi 3264 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  ( 1 ... (
( 2  x.  N
)  _C  N ) ) )
9796, 65syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  NN )
9897adantrr 697 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  NN )
9998nnred 9908 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  RR )
10095, 71syldan 456 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  NN )
101100nnred 9908 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  RR )
102101adantrr 697 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k ^
( k  pCnt  (
( 2  x.  N
)  _C  N ) ) )  e.  RR )
10322adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( 2  x.  N )  e.  RR )
10498nncnd 9909 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  CC )
105104exp1d 11405 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k ^
1 )  =  k )
10698nnge1d 9935 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  1  <_  k
)
107 simprr 733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  e.  NN )
108107, 2syl6eleq 2456 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  e.  ( ZZ>= ` 
1 ) )
10999, 106, 108leexp2ad 11442 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k ^
1 )  <_  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )
110105, 109eqbrtrrd 4147 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )
1114adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  N  e.  NN )
11267, 95sseldi 3264 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  Prime )
113112adantrr 697 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  Prime )
114111, 113, 78syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k ^
( k  pCnt  (
( 2  x.  N
)  _C  N ) ) )  <_  (
2  x.  N ) )
11599, 102, 103, 110, 114letrd 9120 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  (
2  x.  N ) )
116 elfzle2 10953 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( 1 ... ( ( 2  x.  N )  _C  N
) )  ->  k  <_  ( ( 2  x.  N )  _C  N
) )
11796, 116syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  <_  ( ( 2  x.  N
)  _C  N ) )
118117adantrr 697 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  (
( 2  x.  N
)  _C  N ) )
11951adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( ( 2  x.  N )  _C  N )  e.  RR )
120 lemin 10672 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  e.  RR  /\  ( 2  x.  N
)  e.  RR  /\  ( ( 2  x.  N )  _C  N
)  e.  RR )  ->  ( k  <_  if ( ( 2  x.  N )  <_  (
( 2  x.  N
)  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N
)  _C  N ) )  <->  ( k  <_ 
( 2  x.  N
)  /\  k  <_  ( ( 2  x.  N
)  _C  N ) ) ) )
12199, 103, 119, 120syl3anc 1183 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k  <_  if ( ( 2  x.  N )  <_  (
( 2  x.  N
)  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N
)  _C  N ) )  <->  ( k  <_ 
( 2  x.  N
)  /\  k  <_  ( ( 2  x.  N
)  _C  N ) ) ) )
122115, 118, 121mpbir2and 888 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  if ( ( 2  x.  N )  <_  (
( 2  x.  N
)  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N
)  _C  N ) ) )
123122, 36syl6breqr 4165 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  K
)
12439adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  K  e.  NN )
125124nnzd 10267 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  K  e.  ZZ )
126 fznn 11005 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ZZ  ->  (
k  e.  ( 1 ... K )  <->  ( k  e.  NN  /\  k  <_  K ) ) )
127125, 126syl 15 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k  e.  ( 1 ... K
)  <->  ( k  e.  NN  /\  k  <_  K ) ) )
12898, 123, 127mpbir2and 888 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  ( 1 ... K ) )
129128, 113, 76sylanbrc 645 . . . . . . . . . . . . 13  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  ( ( 1 ... K
)  i^i  Prime ) )
130129expr 598 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN  ->  k  e.  ( ( 1 ... K )  i^i  Prime ) ) )
13192, 130mtod 168 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  -.  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN )
13295, 70syldan 456 . . . . . . . . . . . . 13  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k  pCnt  ( ( 2  x.  N )  _C  N
) )  e.  NN0 )
133 elnn0 10116 . . . . . . . . . . . . 13  |-  ( ( k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN0  <->  ( ( k 
pCnt  ( ( 2  x.  N )  _C  N ) )  e.  NN  \/  ( k 
pCnt  ( ( 2  x.  N )  _C  N ) )  =  0 ) )
134132, 133sylib 188 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN  \/  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  =  0 ) )
135134ord 366 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( -.  ( k  pCnt  (
( 2  x.  N
)  _C  N ) )  e.  NN  ->  ( k  pCnt  ( (
2  x.  N )  _C  N ) )  =  0 ) )
136131, 135mpd 14 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k  pCnt  ( ( 2  x.  N )  _C  N
) )  =  0 )
137136oveq2d 5997 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  =  ( k ^ 0 ) )
13897nncnd 9909 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  CC )
139138exp0d 11404 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ 0 )  =  1 )
140137, 139eqtrd 2398 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  =  1 )
141140fveq2d 5636 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  =  ( log `  1 ) )
142 log1 20158 . . . . . . 7  |-  ( log `  1 )  =  0
143141, 142syl6eq 2414 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  =  0 )
144 fzfid 11199 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 1 ... ( ( 2  x.  N )  _C  N ) )  e. 
Fin )
145 ssfi 7226 . . . . . . 7  |-  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  e.  Fin  /\  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) 
C_  ( 1 ... ( ( 2  x.  N )  _C  N
) ) )  -> 
( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime )  e.  Fin )
146144, 62, 145sylancl 643 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  e.  Fin )
14760, 90, 143, 146fsumss 12406 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  =  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) ) )
14866nnrpd 10540 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  RR+ )
14970nn0zd 10266 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( k  pCnt  ( ( 2  x.  N )  _C  N
) )  e.  ZZ )
150 relogexp 20168 . . . . . . 7  |-  ( ( k  e.  RR+  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  ZZ )  -> 
( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  =  ( ( k  pCnt  ( (
2  x.  N )  _C  N ) )  x.  ( log `  k
) ) )
151148, 149, 150syl2anc 642 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  =  ( ( k  pCnt  (
( 2  x.  N
)  _C  N ) )  x.  ( log `  k ) ) )
152151sumeq2dv 12384 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  =  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  x.  ( log `  k ) ) )
153 pclogsum 20677 . . . . . 6  |-  ( ( ( 2  x.  N
)  _C  N )  e.  NN  ->  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  x.  ( log `  k ) )  =  ( log `  (
( 2  x.  N
)  _C  N ) ) )
15415, 153syl 15 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  x.  ( log `  k ) )  =  ( log `  (
( 2  x.  N
)  _C  N ) ) )
155147, 152, 1543eqtrd 2402 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  =  ( log `  ( ( 2  x.  N )  _C  N
) ) )
15630recnd 9008 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( 2  x.  N
) )  e.  CC )
157 fsumconst 12460 . . . . . 6  |-  ( ( ( ( 1 ... K )  i^i  Prime )  e.  Fin  /\  ( log `  ( 2  x.  N ) )  e.  CC )  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
2  x.  N ) )  =  ( (
# `  ( (
1 ... K )  i^i 
Prime ) )  x.  ( log `  ( 2  x.  N ) ) ) )
15848, 156, 157syl2anc 642 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
2  x.  N ) )  =  ( (
# `  ( (
1 ... K )  i^i 
Prime ) )  x.  ( log `  ( 2  x.  N ) ) ) )
15926, 2eleqtri 2438 . . . . . . 7  |-  2  e.  ( ZZ>= `  1 )
160 ppival2g 20590 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  2  e.  ( ZZ>= ` 
1 ) )  -> 
(π `  K )  =  ( # `  (
( 1 ... K
)  i^i  Prime ) ) )
16149, 159, 160sylancl 643 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  K
)  =  ( # `  ( ( 1 ... K )  i^i  Prime ) ) )
162161oveq1d 5996 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) )  =  ( ( # `  ( ( 1 ... K )  i^i  Prime ) )  x.  ( log `  ( 2  x.  N
) ) ) )
163158, 162eqtr4d 2401 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
2  x.  N ) )  =  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) ) )
16488, 155, 1633brtr3d 4154 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 2  x.  N )  _C  N
) )  <_  (
(π `  K )  x.  ( log `  (
2  x.  N ) ) ) )
165 min1 10669 . . . . . . 7  |-  ( ( ( 2  x.  N
)  e.  RR  /\  ( ( 2  x.  N )  _C  N
)  e.  RR )  ->  if ( ( 2  x.  N )  <_  ( ( 2  x.  N )  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N ) )  <_ 
( 2  x.  N
) )
16622, 51, 165syl2anc 642 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  if (
( 2  x.  N
)  <_  ( (
2  x.  N )  _C  N ) ,  ( 2  x.  N
) ,  ( ( 2  x.  N )  _C  N ) )  <_  ( 2  x.  N ) )
16736, 166syl5eqbr 4158 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  <_  ( 2  x.  N ) )
168 ppiwordi 20623 . . . . 5  |-  ( ( K  e.  RR  /\  ( 2  x.  N
)  e.  RR  /\  K  <_  ( 2  x.  N ) )  -> 
(π `  K )  <_ 
(π `  ( 2  x.  N ) ) )
16940, 22, 167, 168syl3anc 1183 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  K
)  <_  (π `  (
2  x.  N ) ) )
170 1re 8984 . . . . . . . 8  |-  1  e.  RR
171170a1i 10 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  1  e.  RR )
172 2re 9962 . . . . . . . 8  |-  2  e.  RR
173172a1i 10 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  2  e.  RR )
174 1lt2 10035 . . . . . . . 8  |-  1  <  2
175174a1i 10 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  1  <  2 )
176 2cn 9963 . . . . . . . . 9  |-  2  e.  CC
177176mulid1i 8986 . . . . . . . 8  |-  ( 2  x.  1 )  =  2
1784nnge1d 9935 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  4
)  ->  1  <_  N )
179 eluzelre 10390 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  RR )
180 2pos 9975 . . . . . . . . . . . 12  |-  0  <  2
181172, 180pm3.2i 441 . . . . . . . . . . 11  |-  ( 2  e.  RR  /\  0  <  2 )
182181a1i 10 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  e.  RR  /\  0  <  2 ) )
183 lemul2 9756 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  N  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( 1  <_  N 
<->  ( 2  x.  1 )  <_  ( 2  x.  N ) ) )
184171, 179, 182, 183syl3anc 1183 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 1  <_  N  <->  ( 2  x.  1 )  <_ 
( 2  x.  N
) ) )
185178, 184mpbid 201 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  1 )  <_ 
( 2  x.  N
) )
186177, 185syl5eqbrr 4159 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  2  <_  ( 2  x.  N ) )
187171, 173, 22, 175, 186ltletrd 9123 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  1  <  ( 2  x.  N ) )
18822, 187rplogcld 20202 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( 2  x.  N
) )  e.  RR+ )
18943, 25, 188lemul1d 10580 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  K )  <_  (π `  ( 2  x.  N
) )  <->  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) )  <_  ( (π `  (
2  x.  N ) )  x.  ( log `  ( 2  x.  N
) ) ) ) )
190169, 189mpbid 201 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) )  <_  ( (π `  (
2  x.  N ) )  x.  ( log `  ( 2  x.  N
) ) ) )
19117, 44, 31, 164, 190letrd 9120 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 2  x.  N )  _C  N
) )  <_  (
(π `  ( 2  x.  N ) )  x.  ( log `  (
2  x.  N ) ) ) )
19211, 17, 31, 35, 191ltletrd 9123 1  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 4 ^ N )  /  N
) )  <  (
(π `  ( 2  x.  N ) )  x.  ( log `  (
2  x.  N ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1647    e. wcel 1715    \ cdif 3235    i^i cin 3237    C_ wss 3238   ifcif 3654   class class class wbr 4125   ` cfv 5358  (class class class)co 5981   Fincfn 7006   CCcc 8882   RRcr 8883   0cc0 8884   1c1 8885    x. cmul 8889    < clt 9014    <_ cle 9015    / cdiv 9570   NNcn 9893   2c2 9942   4c4 9944   NN0cn0 10114   ZZcz 10175   ZZ>=cuz 10381   RR+crp 10505   ...cfz 10935   ^cexp 11269    _C cbc 11480   #chash 11505   sum_csu 12366   expce 12551   Primecprime 12966    pCnt cpc 13097   logclog 20130  πcppi 20554
This theorem is referenced by:  chebbnd1lem3  20843
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962  ax-addf 8963  ax-mulf 8964
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-iin 4010  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-se 4456  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-isom 5367  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-of 6205  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-2o 6622  df-oadd 6625  df-er 6802  df-map 6917  df-pm 6918  df-ixp 6961  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-fi 7312  df-sup 7341  df-oi 7372  df-card 7719  df-cda 7941  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-4 9953  df-5 9954  df-6 9955  df-7 9956  df-8 9957  df-9 9958  df-10 9959  df-n0 10115  df-z 10176  df-dec 10276  df-uz 10382  df-q 10468  df-rp 10506  df-xneg 10603  df-xadd 10604  df-xmul 10605  df-ioo 10813  df-ioc 10814  df-ico 10815  df-icc 10816  df-fz 10936  df-fzo 11026  df-fl 11089  df-mod 11138  df-seq 11211  df-exp 11270  df-fac 11454  df-bc 11481  df-hash 11506  df-shft 11769  df-cj 11791  df-re 11792  df-im 11793  df-sqr 11927  df-abs 11928  df-limsup 12152  df-clim 12169  df-rlim 12170  df-sum 12367  df-ef 12557  df-sin 12559  df-cos 12560  df-pi 12562  df-dvds 12740  df-gcd 12894  df-prm 12967  df-pc 13098  df-struct 13358  df-ndx 13359  df-slot 13360  df-base 13361  df-sets 13362  df-ress 13363  df-plusg 13429  df-mulr 13430  df-starv 13431  df-sca 13432  df-vsca 13433  df-tset 13435  df-ple 13436  df-ds 13438  df-unif 13439  df-hom 13440  df-cco 13441  df-rest 13537  df-topn 13538  df-topgen 13554  df-pt 13555  df-prds 13558  df-xrs 13613  df-0g 13614  df-gsum 13615  df-qtop 13620  df-imas 13621  df-xps 13623  df-mre 13698  df-mrc 13699  df-acs 13701  df-mnd 14577  df-submnd 14626  df-mulg 14702  df-cntz 15003  df-cmn 15301  df-xmet 16586  df-met 16587  df-bl 16588  df-mopn 16589  df-fbas 16590  df-fg 16591  df-cnfld 16594  df-top 16853  df-bases 16855  df-topon 16856  df-topsp 16857  df-cld 16973  df-ntr 16974  df-cls 16975  df-nei 17052  df-lp 17085  df-perf 17086  df-cn 17174  df-cnp 17175  df-haus 17260  df-tx 17474  df-hmeo 17663  df-fil 17754  df-fm 17846  df-flim 17847  df-flf 17848  df-xms 18098  df-ms 18099  df-tms 18100  df-cncf 18596  df-limc 19431  df-dv 19432  df-log 20132  df-ppi 20560
  Copyright terms: Public domain W3C validator