MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem1 Unicode version

Theorem chebbnd1lem1 20614
Description: Lemma for chebbnd1 20617: show a lower bound on π ( x ) at even integers using similar techniques to those used to prove bpos 20528. (Note that the expression  K is actually equal to  2  x.  N, but proving that is not necessary for the proof, and it's too much work.) The key to the proof is bposlem1 20519, which shows that each term in the expansion  ( (
2  x.  N )  _C  N )  = 
prod_ p  e.  Prime  ( p ^ ( p  pCnt  ( ( 2  x.  N
)  _C  N ) ) ) is at most  2  x.  N, so that the sum really only has nonzero elements up to  2  x.  N, and since each term is at most  2  x.  N, after taking logs we get the inequality π ( 2  x.  N
)  x.  log (
2  x.  N )  <_  log ( ( 2  x.  N )  _C  N ), and bclbnd 20515 finishes the proof. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2016.)
Hypothesis
Ref Expression
chebbnd1lem1.1  |-  K  =  if ( ( 2  x.  N )  <_ 
( ( 2  x.  N )  _C  N
) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N
) )
Assertion
Ref Expression
chebbnd1lem1  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 4 ^ N )  /  N
) )  <  (
(π `  ( 2  x.  N ) )  x.  ( log `  (
2  x.  N ) ) ) )

Proof of Theorem chebbnd1lem1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 4nn 9875 . . . . . 6  |-  4  e.  NN
2 nnuz 10259 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
32uztrn2 10241 . . . . . . . 8  |-  ( ( 4  e.  NN  /\  N  e.  ( ZZ>= ` 
4 ) )  ->  N  e.  NN )
41, 3mpan 651 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  NN )
54nnnn0d 10014 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  NN0 )
6 nnexpcl 11112 . . . . . 6  |-  ( ( 4  e.  NN  /\  N  e.  NN0 )  -> 
( 4 ^ N
)  e.  NN )
71, 5, 6sylancr 644 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 4 ^ N )  e.  NN )
87nnrpd 10385 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 4 ^ N )  e.  RR+ )
94nnrpd 10385 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  RR+ )
108, 9rpdivcld 10403 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
4 ^ N )  /  N )  e.  RR+ )
1110relogcld 19970 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 4 ^ N )  /  N
) )  e.  RR )
12 fzctr 10850 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  ( 0 ... (
2  x.  N ) ) )
135, 12syl 15 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  ( 0 ... (
2  x.  N ) ) )
14 bccl2 11331 . . . . 5  |-  ( N  e.  ( 0 ... ( 2  x.  N
) )  ->  (
( 2  x.  N
)  _C  N )  e.  NN )
1513, 14syl 15 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  NN )
1615nnrpd 10385 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  RR+ )
1716relogcld 19970 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 2  x.  N )  _C  N
) )  e.  RR )
18 2z 10050 . . . . . . 7  |-  2  e.  ZZ
19 eluzelz 10234 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  ZZ )
20 zmulcl 10062 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  x.  N
)  e.  ZZ )
2118, 19, 20sylancr 644 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  N )  e.  ZZ )
2221zred 10113 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  N )  e.  RR )
23 ppicl 20365 . . . . 5  |-  ( ( 2  x.  N )  e.  RR  ->  (π `  ( 2  x.  N
) )  e.  NN0 )
2422, 23syl 15 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  (
2  x.  N ) )  e.  NN0 )
2524nn0red 10015 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  (
2  x.  N ) )  e.  RR )
26 2nn 9873 . . . . . 6  |-  2  e.  NN
27 nnmulcl 9765 . . . . . 6  |-  ( ( 2  e.  NN  /\  N  e.  NN )  ->  ( 2  x.  N
)  e.  NN )
2826, 4, 27sylancr 644 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  N )  e.  NN )
2928nnrpd 10385 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  N )  e.  RR+ )
3029relogcld 19970 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( 2  x.  N
) )  e.  RR )
3125, 30remulcld 8859 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  ( 2  x.  N
) )  x.  ( log `  ( 2  x.  N ) ) )  e.  RR )
32 bclbnd 20515 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
4 ^ N )  /  N )  < 
( ( 2  x.  N )  _C  N
) )
33 logltb 19949 . . . 4  |-  ( ( ( ( 4 ^ N )  /  N
)  e.  RR+  /\  (
( 2  x.  N
)  _C  N )  e.  RR+ )  ->  (
( ( 4 ^ N )  /  N
)  <  ( (
2  x.  N )  _C  N )  <->  ( log `  ( ( 4 ^ N )  /  N
) )  <  ( log `  ( ( 2  x.  N )  _C  N ) ) ) )
3410, 16, 33syl2anc 642 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
( 4 ^ N
)  /  N )  <  ( ( 2  x.  N )  _C  N )  <->  ( log `  ( ( 4 ^ N )  /  N
) )  <  ( log `  ( ( 2  x.  N )  _C  N ) ) ) )
3532, 34mpbid 201 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 4 ^ N )  /  N
) )  <  ( log `  ( ( 2  x.  N )  _C  N ) ) )
36 chebbnd1lem1.1 . . . . . . . 8  |-  K  =  if ( ( 2  x.  N )  <_ 
( ( 2  x.  N )  _C  N
) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N
) )
37 ifcl 3602 . . . . . . . . 9  |-  ( ( ( 2  x.  N
)  e.  NN  /\  ( ( 2  x.  N )  _C  N
)  e.  NN )  ->  if ( ( 2  x.  N )  <_  ( ( 2  x.  N )  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N ) )  e.  NN )
3828, 15, 37syl2anc 642 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  4
)  ->  if (
( 2  x.  N
)  <_  ( (
2  x.  N )  _C  N ) ,  ( 2  x.  N
) ,  ( ( 2  x.  N )  _C  N ) )  e.  NN )
3936, 38syl5eqel 2368 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  e.  NN )
4039nnred 9757 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  e.  RR )
41 ppicl 20365 . . . . . 6  |-  ( K  e.  RR  ->  (π `  K )  e.  NN0 )
4240, 41syl 15 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  K
)  e.  NN0 )
4342nn0red 10015 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  K
)  e.  RR )
4443, 30remulcld 8859 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) )  e.  RR )
45 fzfid 11031 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 1 ... K )  e. 
Fin )
46 inss1 3390 . . . . . 6  |-  ( ( 1 ... K )  i^i  Prime )  C_  (
1 ... K )
47 ssfi 7079 . . . . . 6  |-  ( ( ( 1 ... K
)  e.  Fin  /\  ( ( 1 ... K )  i^i  Prime ) 
C_  ( 1 ... K ) )  -> 
( ( 1 ... K )  i^i  Prime )  e.  Fin )
4845, 46, 47sylancl 643 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
1 ... K )  i^i 
Prime )  e.  Fin )
4939nnzd 10112 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  e.  ZZ )
5015nnzd 10112 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  ZZ )
5115nnred 9757 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  RR )
52 min2 10514 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  N
)  e.  RR  /\  ( ( 2  x.  N )  _C  N
)  e.  RR )  ->  if ( ( 2  x.  N )  <_  ( ( 2  x.  N )  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N ) )  <_ 
( ( 2  x.  N )  _C  N
) )
5322, 51, 52syl2anc 642 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  4
)  ->  if (
( 2  x.  N
)  <_  ( (
2  x.  N )  _C  N ) ,  ( 2  x.  N
) ,  ( ( 2  x.  N )  _C  N ) )  <_  ( ( 2  x.  N )  _C  N ) )
5436, 53syl5eqbr 4057 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  <_  ( ( 2  x.  N
)  _C  N ) )
55 eluz2 10232 . . . . . . . . . 10  |-  ( ( ( 2  x.  N
)  _C  N )  e.  ( ZZ>= `  K
)  <->  ( K  e.  ZZ  /\  ( ( 2  x.  N )  _C  N )  e.  ZZ  /\  K  <_ 
( ( 2  x.  N )  _C  N
) ) )
5649, 50, 54, 55syl3anbrc 1136 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
2  x.  N )  _C  N )  e.  ( ZZ>= `  K )
)
57 fzss2 10827 . . . . . . . . 9  |-  ( ( ( 2  x.  N
)  _C  N )  e.  ( ZZ>= `  K
)  ->  ( 1 ... K )  C_  ( 1 ... (
( 2  x.  N
)  _C  N ) ) )
5856, 57syl 15 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 1 ... K )  C_  ( 1 ... (
( 2  x.  N
)  _C  N ) ) )
59 ssrin 3395 . . . . . . . 8  |-  ( ( 1 ... K ) 
C_  ( 1 ... ( ( 2  x.  N )  _C  N
) )  ->  (
( 1 ... K
)  i^i  Prime )  C_  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )
6058, 59syl 15 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
1 ... K )  i^i 
Prime )  C_  ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i  Prime ) )
6160sselda 3181 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )
62 inss1 3390 . . . . . . . . . . 11  |-  ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i  Prime )  C_  (
1 ... ( ( 2  x.  N )  _C  N ) )
63 simpr 447 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )
6462, 63sseldi 3179 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  ( 1 ... (
( 2  x.  N
)  _C  N ) ) )
65 elfznn 10815 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( ( 2  x.  N )  _C  N
) )  ->  k  e.  NN )
6664, 65syl 15 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  NN )
67 inss2 3391 . . . . . . . . . . 11  |-  ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i  Prime )  C_  Prime
6867, 63sseldi 3179 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  Prime )
6915adantr 451 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( (
2  x.  N )  _C  N )  e.  NN )
7068, 69pccld 12899 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( k  pCnt  ( ( 2  x.  N )  _C  N
) )  e.  NN0 )
7166, 70nnexpcld 11262 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  NN )
7271nnrpd 10385 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  RR+ )
7372relogcld 19970 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  e.  RR )
7461, 73syldan 456 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  e.  RR )
7530adantr 451 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( log `  ( 2  x.  N
) )  e.  RR )
76 elin 3359 . . . . . . . . 9  |-  ( k  e.  ( ( 1 ... K )  i^i 
Prime )  <->  ( k  e.  ( 1 ... K
)  /\  k  e.  Prime ) )
7776simprbi 450 . . . . . . . 8  |-  ( k  e.  ( ( 1 ... K )  i^i 
Prime )  ->  k  e. 
Prime )
78 bposlem1 20519 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  e.  Prime )  -> 
( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) )  <_  ( 2  x.  N ) )
794, 77, 78syl2an 463 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  <_  (
2  x.  N ) )
8061, 72syldan 456 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  RR+ )
8180reeflogd 19971 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( exp `  ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) ) )  =  ( k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )
8229adantr 451 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( 2  x.  N )  e.  RR+ )
8382reeflogd 19971 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( exp `  ( log `  (
2  x.  N ) ) )  =  ( 2  x.  N ) )
8479, 81, 833brtr4d 4054 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( exp `  ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) ) )  <_  ( exp `  ( log `  (
2  x.  N ) ) ) )
85 efle 12394 . . . . . . 7  |-  ( ( ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  e.  RR  /\  ( log `  ( 2  x.  N ) )  e.  RR )  -> 
( ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  <_  ( log `  ( 2  x.  N
) )  <->  ( exp `  ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) ) )  <_  ( exp `  ( log `  (
2  x.  N ) ) ) ) )
8674, 75, 85syl2anc 642 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( ( log `  ( k ^
( k  pCnt  (
( 2  x.  N
)  _C  N ) ) ) )  <_ 
( log `  (
2  x.  N ) )  <->  ( exp `  ( log `  ( k ^
( k  pCnt  (
( 2  x.  N
)  _C  N ) ) ) ) )  <_  ( exp `  ( log `  ( 2  x.  N ) ) ) ) )
8784, 86mpbird 223 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  <_  ( log `  ( 2  x.  N ) ) )
8848, 74, 75, 87fsumle 12253 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  <_  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
2  x.  N ) ) )
8973recnd 8857 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  e.  CC )
9061, 89syldan 456 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... K )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  e.  CC )
91 eldifn 3300 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i  Prime )  \  (
( 1 ... K
)  i^i  Prime ) )  ->  -.  k  e.  ( ( 1 ... K )  i^i  Prime ) )
9291adantl 452 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  -.  k  e.  ( ( 1 ... K )  i^i  Prime ) )
93 difss 3304 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  C_  (
( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )
94 simpr 447 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )
9593, 94sseldi 3179 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )
9662, 95sseldi 3179 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  ( 1 ... (
( 2  x.  N
)  _C  N ) ) )
9796, 65syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  NN )
9897adantrr 697 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  NN )
9998nnred 9757 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  RR )
10095, 71syldan 456 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  NN )
101100nnred 9757 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  e.  RR )
102101adantrr 697 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k ^
( k  pCnt  (
( 2  x.  N
)  _C  N ) ) )  e.  RR )
10322adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( 2  x.  N )  e.  RR )
10498nncnd 9758 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  CC )
105104exp1d 11236 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k ^
1 )  =  k )
10698nnge1d 9784 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  1  <_  k
)
107 simprr 733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  e.  NN )
108107, 2syl6eleq 2374 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  e.  ( ZZ>= ` 
1 ) )
10999, 106, 108leexp2ad 11273 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k ^
1 )  <_  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )
110105, 109eqbrtrrd 4046 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )
1114adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  N  e.  NN )
11267, 95sseldi 3179 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  Prime )
113112adantrr 697 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  Prime )
114111, 113, 78syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k ^
( k  pCnt  (
( 2  x.  N
)  _C  N ) ) )  <_  (
2  x.  N ) )
11599, 102, 103, 110, 114letrd 8969 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  (
2  x.  N ) )
116 elfzle2 10796 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( 1 ... ( ( 2  x.  N )  _C  N
) )  ->  k  <_  ( ( 2  x.  N )  _C  N
) )
11796, 116syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  <_  ( ( 2  x.  N
)  _C  N ) )
118117adantrr 697 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  (
( 2  x.  N
)  _C  N ) )
11951adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( ( 2  x.  N )  _C  N )  e.  RR )
120 lemin 10516 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  e.  RR  /\  ( 2  x.  N
)  e.  RR  /\  ( ( 2  x.  N )  _C  N
)  e.  RR )  ->  ( k  <_  if ( ( 2  x.  N )  <_  (
( 2  x.  N
)  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N
)  _C  N ) )  <->  ( k  <_ 
( 2  x.  N
)  /\  k  <_  ( ( 2  x.  N
)  _C  N ) ) ) )
12199, 103, 119, 120syl3anc 1182 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k  <_  if ( ( 2  x.  N )  <_  (
( 2  x.  N
)  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N
)  _C  N ) )  <->  ( k  <_ 
( 2  x.  N
)  /\  k  <_  ( ( 2  x.  N
)  _C  N ) ) ) )
122115, 118, 121mpbir2and 888 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  if ( ( 2  x.  N )  <_  (
( 2  x.  N
)  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N
)  _C  N ) ) )
123122, 36syl6breqr 4064 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  <_  K
)
12439adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  K  e.  NN )
125124nnzd 10112 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  K  e.  ZZ )
126 fznn 10848 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ZZ  ->  (
k  e.  ( 1 ... K )  <->  ( k  e.  NN  /\  k  <_  K ) ) )
127125, 126syl 15 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  ( k  e.  ( 1 ... K
)  <->  ( k  e.  NN  /\  k  <_  K ) ) )
12898, 123, 127mpbir2and 888 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  ( 1 ... K ) )
129128, 113, 76sylanbrc 645 . . . . . . . . . . . . 13  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  (
k  e.  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  i^i  Prime )  \  ( ( 1 ... K )  i^i 
Prime ) )  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN ) )  ->  k  e.  ( ( 1 ... K
)  i^i  Prime ) )
130129expr 598 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN  ->  k  e.  ( ( 1 ... K )  i^i  Prime ) ) )
13192, 130mtod 168 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  -.  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN )
13295, 70syldan 456 . . . . . . . . . . . . 13  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k  pCnt  ( ( 2  x.  N )  _C  N
) )  e.  NN0 )
133 elnn0 9963 . . . . . . . . . . . . 13  |-  ( ( k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN0  <->  ( ( k 
pCnt  ( ( 2  x.  N )  _C  N ) )  e.  NN  \/  ( k 
pCnt  ( ( 2  x.  N )  _C  N ) )  =  0 ) )
134132, 133sylib 188 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  NN  \/  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  =  0 ) )
135134ord 366 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( -.  ( k  pCnt  (
( 2  x.  N
)  _C  N ) )  e.  NN  ->  ( k  pCnt  ( (
2  x.  N )  _C  N ) )  =  0 ) )
136131, 135mpd 14 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k  pCnt  ( ( 2  x.  N )  _C  N
) )  =  0 )
137136oveq2d 5836 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  =  ( k ^ 0 ) )
13897nncnd 9758 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  k  e.  CC )
139138exp0d 11235 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ 0 )  =  1 )
140137, 139eqtrd 2316 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( k ^ ( k  pCnt  ( ( 2  x.  N
)  _C  N ) ) )  =  1 )
141140fveq2d 5490 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  =  ( log `  1 ) )
142 log1 19935 . . . . . . 7  |-  ( log `  1 )  =  0
143141, 142syl6eq 2332 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( ( 1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  \  (
( 1 ... K
)  i^i  Prime ) ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  =  0 )
144 fzfid 11031 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 1 ... ( ( 2  x.  N )  _C  N ) )  e. 
Fin )
145 ssfi 7079 . . . . . . 7  |-  ( ( ( 1 ... (
( 2  x.  N
)  _C  N ) )  e.  Fin  /\  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) 
C_  ( 1 ... ( ( 2  x.  N )  _C  N
) ) )  -> 
( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime )  e.  Fin )
146144, 62, 145sylancl 643 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (
1 ... ( ( 2  x.  N )  _C  N ) )  i^i 
Prime )  e.  Fin )
14760, 90, 143, 146fsumss 12194 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  =  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) ) )
14866nnrpd 10385 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  k  e.  RR+ )
14970nn0zd 10111 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( k  pCnt  ( ( 2  x.  N )  _C  N
) )  e.  ZZ )
150 relogexp 19945 . . . . . . 7  |-  ( ( k  e.  RR+  /\  (
k  pCnt  ( (
2  x.  N )  _C  N ) )  e.  ZZ )  -> 
( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  =  ( ( k  pCnt  ( (
2  x.  N )  _C  N ) )  x.  ( log `  k
) ) )
151148, 149, 150syl2anc 642 . . . . . 6  |-  ( ( N  e.  ( ZZ>= ` 
4 )  /\  k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) )  ->  ( log `  ( k ^ (
k  pCnt  ( (
2  x.  N )  _C  N ) ) ) )  =  ( ( k  pCnt  (
( 2  x.  N
)  _C  N ) )  x.  ( log `  k ) ) )
152151sumeq2dv 12172 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  =  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  x.  ( log `  k ) ) )
153 pclogsum 20450 . . . . . 6  |-  ( ( ( 2  x.  N
)  _C  N )  e.  NN  ->  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  x.  ( log `  k ) )  =  ( log `  (
( 2  x.  N
)  _C  N ) ) )
15415, 153syl 15 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... ( ( 2  x.  N )  _C  N
) )  i^i  Prime ) ( ( k  pCnt  ( ( 2  x.  N
)  _C  N ) )  x.  ( log `  k ) )  =  ( log `  (
( 2  x.  N
)  _C  N ) ) )
155147, 152, 1543eqtrd 2320 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
k ^ ( k 
pCnt  ( ( 2  x.  N )  _C  N ) ) ) )  =  ( log `  ( ( 2  x.  N )  _C  N
) ) )
15630recnd 8857 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( 2  x.  N
) )  e.  CC )
157 fsumconst 12248 . . . . . 6  |-  ( ( ( ( 1 ... K )  i^i  Prime )  e.  Fin  /\  ( log `  ( 2  x.  N ) )  e.  CC )  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
2  x.  N ) )  =  ( (
# `  ( (
1 ... K )  i^i 
Prime ) )  x.  ( log `  ( 2  x.  N ) ) ) )
15848, 156, 157syl2anc 642 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
2  x.  N ) )  =  ( (
# `  ( (
1 ... K )  i^i 
Prime ) )  x.  ( log `  ( 2  x.  N ) ) ) )
15926, 2eleqtri 2356 . . . . . . 7  |-  2  e.  ( ZZ>= `  1 )
160 ppival2g 20363 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  2  e.  ( ZZ>= ` 
1 ) )  -> 
(π `  K )  =  ( # `  (
( 1 ... K
)  i^i  Prime ) ) )
16149, 159, 160sylancl 643 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  K
)  =  ( # `  ( ( 1 ... K )  i^i  Prime ) ) )
162161oveq1d 5835 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) )  =  ( ( # `  ( ( 1 ... K )  i^i  Prime ) )  x.  ( log `  ( 2  x.  N
) ) ) )
163158, 162eqtr4d 2319 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  sum_ k  e.  ( ( 1 ... K )  i^i  Prime ) ( log `  (
2  x.  N ) )  =  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) ) )
16488, 155, 1633brtr3d 4053 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 2  x.  N )  _C  N
) )  <_  (
(π `  K )  x.  ( log `  (
2  x.  N ) ) ) )
165 min1 10513 . . . . . . 7  |-  ( ( ( 2  x.  N
)  e.  RR  /\  ( ( 2  x.  N )  _C  N
)  e.  RR )  ->  if ( ( 2  x.  N )  <_  ( ( 2  x.  N )  _C  N ) ,  ( 2  x.  N ) ,  ( ( 2  x.  N )  _C  N ) )  <_ 
( 2  x.  N
) )
16622, 51, 165syl2anc 642 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  if (
( 2  x.  N
)  <_  ( (
2  x.  N )  _C  N ) ,  ( 2  x.  N
) ,  ( ( 2  x.  N )  _C  N ) )  <_  ( 2  x.  N ) )
16736, 166syl5eqbr 4057 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  K  <_  ( 2  x.  N ) )
168 ppiwordi 20396 . . . . 5  |-  ( ( K  e.  RR  /\  ( 2  x.  N
)  e.  RR  /\  K  <_  ( 2  x.  N ) )  -> 
(π `  K )  <_ 
(π `  ( 2  x.  N ) ) )
16940, 22, 167, 168syl3anc 1182 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  (π `  K
)  <_  (π `  (
2  x.  N ) ) )
170 1re 8833 . . . . . . . 8  |-  1  e.  RR
171170a1i 10 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  1  e.  RR )
172 2re 9811 . . . . . . . 8  |-  2  e.  RR
173172a1i 10 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  2  e.  RR )
174 1lt2 9882 . . . . . . . 8  |-  1  <  2
175174a1i 10 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  1  <  2 )
176 2cn 9812 . . . . . . . . 9  |-  2  e.  CC
177176mulid1i 8835 . . . . . . . 8  |-  ( 2  x.  1 )  =  2
1784nnge1d 9784 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  4
)  ->  1  <_  N )
179 eluzelre 10235 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  N  e.  RR )
180 2pos 9824 . . . . . . . . . . . 12  |-  0  <  2
181172, 180pm3.2i 441 . . . . . . . . . . 11  |-  ( 2  e.  RR  /\  0  <  2 )
182181a1i 10 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  e.  RR  /\  0  <  2 ) )
183 lemul2 9605 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  N  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( 1  <_  N 
<->  ( 2  x.  1 )  <_  ( 2  x.  N ) ) )
184171, 179, 182, 183syl3anc 1182 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 1  <_  N  <->  ( 2  x.  1 )  <_ 
( 2  x.  N
) ) )
185178, 184mpbid 201 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2  x.  1 )  <_ 
( 2  x.  N
) )
186177, 185syl5eqbrr 4058 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  4
)  ->  2  <_  ( 2  x.  N ) )
187171, 173, 22, 175, 186ltletrd 8972 . . . . . 6  |-  ( N  e.  ( ZZ>= `  4
)  ->  1  <  ( 2  x.  N ) )
18822, 187rplogcld 19976 . . . . 5  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( 2  x.  N
) )  e.  RR+ )
18943, 25, 188lemul1d 10425 . . . 4  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  K )  <_  (π `  ( 2  x.  N
) )  <->  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) )  <_  ( (π `  (
2  x.  N ) )  x.  ( log `  ( 2  x.  N
) ) ) ) )
190169, 189mpbid 201 . . 3  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( (π `  K )  x.  ( log `  ( 2  x.  N ) ) )  <_  ( (π `  (
2  x.  N ) )  x.  ( log `  ( 2  x.  N
) ) ) )
19117, 44, 31, 164, 190letrd 8969 . 2  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 2  x.  N )  _C  N
) )  <_  (
(π `  ( 2  x.  N ) )  x.  ( log `  (
2  x.  N ) ) ) )
19211, 17, 31, 35, 191ltletrd 8972 1  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 4 ^ N )  /  N
) )  <  (
(π `  ( 2  x.  N ) )  x.  ( log `  (
2  x.  N ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1685    \ cdif 3150    i^i cin 3152    C_ wss 3153   ifcif 3566   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   Fincfn 6859   CCcc 8731   RRcr 8732   0cc0 8733   1c1 8734    x. cmul 8738    < clt 8863    <_ cle 8864    / cdiv 9419   NNcn 9742   2c2 9791   4c4 9793   NN0cn0 9961   ZZcz 10020   ZZ>=cuz 10226   RR+crp 10350   ...cfz 10778   ^cexp 11100    _C cbc 11311   #chash 11333   sum_csu 12154   expce 12339   Primecprime 12754    pCnt cpc 12885   logclog 19908  πcppi 20327
This theorem is referenced by:  chebbnd1lem3  20616
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7338  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811  ax-addf 8812  ax-mulf 8813
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-of 6040  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-2o 6476  df-oadd 6479  df-er 6656  df-map 6770  df-pm 6771  df-ixp 6814  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-fi 7161  df-sup 7190  df-oi 7221  df-card 7568  df-cda 7790  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-5 9803  df-6 9804  df-7 9805  df-8 9806  df-9 9807  df-10 9808  df-n0 9962  df-z 10021  df-dec 10121  df-uz 10227  df-q 10313  df-rp 10351  df-xneg 10448  df-xadd 10449  df-xmul 10450  df-ioo 10656  df-ioc 10657  df-ico 10658  df-icc 10659  df-fz 10779  df-fzo 10867  df-fl 10921  df-mod 10970  df-seq 11043  df-exp 11101  df-fac 11285  df-bc 11312  df-hash 11334  df-shft 11558  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-limsup 11941  df-clim 11958  df-rlim 11959  df-sum 12155  df-ef 12345  df-sin 12347  df-cos 12348  df-pi 12350  df-dvds 12528  df-gcd 12682  df-prm 12755  df-pc 12886  df-struct 13146  df-ndx 13147  df-slot 13148  df-base 13149  df-sets 13150  df-ress 13151  df-plusg 13217  df-mulr 13218  df-starv 13219  df-sca 13220  df-vsca 13221  df-tset 13223  df-ple 13224  df-ds 13226  df-hom 13228  df-cco 13229  df-rest 13323  df-topn 13324  df-topgen 13340  df-pt 13341  df-prds 13344  df-xrs 13399  df-0g 13400  df-gsum 13401  df-qtop 13406  df-imas 13407  df-xps 13409  df-mre 13484  df-mrc 13485  df-acs 13487  df-mnd 14363  df-submnd 14412  df-mulg 14488  df-cntz 14789  df-cmn 15087  df-xmet 16369  df-met 16370  df-bl 16371  df-mopn 16372  df-cnfld 16374  df-top 16632  df-bases 16634  df-topon 16635  df-topsp 16636  df-cld 16752  df-ntr 16753  df-cls 16754  df-nei 16831  df-lp 16864  df-perf 16865  df-cn 16953  df-cnp 16954  df-haus 17039  df-tx 17253  df-hmeo 17442  df-fbas 17516  df-fg 17517  df-fil 17537  df-fm 17629  df-flim 17630  df-flf 17631  df-xms 17881  df-ms 17882  df-tms 17883  df-cncf 18378  df-limc 19212  df-dv 19213  df-log 19910  df-ppi 20333
  Copyright terms: Public domain W3C validator