MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem2 Structured version   Unicode version

Theorem chordthmlem2 20666
Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then QMP is a right angle. This is proven by reduction to the special case chordthmlem 20665, where P = B, and using angrtmuld 20642 to observe that QMP is right iff QMB is. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem2.angdef  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
chordthmlem2.A  |-  ( ph  ->  A  e.  CC )
chordthmlem2.B  |-  ( ph  ->  B  e.  CC )
chordthmlem2.Q  |-  ( ph  ->  Q  e.  CC )
chordthmlem2.X  |-  ( ph  ->  X  e.  RR )
chordthmlem2.M  |-  ( ph  ->  M  =  ( ( A  +  B )  /  2 ) )
chordthmlem2.P  |-  ( ph  ->  P  =  ( ( X  x.  A )  +  ( ( 1  -  X )  x.  B ) ) )
chordthmlem2.ABequidistQ  |-  ( ph  ->  ( abs `  ( A  -  Q )
)  =  ( abs `  ( B  -  Q
) ) )
chordthmlem2.PneM  |-  ( ph  ->  P  =/=  M )
chordthmlem2.QneM  |-  ( ph  ->  Q  =/=  M )
Assertion
Ref Expression
chordthmlem2  |-  ( ph  ->  ( ( Q  -  M ) F ( P  -  M ) )  e.  { ( pi  /  2 ) ,  -u ( pi  / 
2 ) } )
Distinct variable groups:    x, y, Q    x, P, y    x, M, y    x, B, y   
x, A, y
Allowed substitution hints:    ph( x, y)    F( x, y)    X( x, y)

Proof of Theorem chordthmlem2
StepHypRef Expression
1 chordthmlem2.angdef . . 3  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
2 chordthmlem2.A . . 3  |-  ( ph  ->  A  e.  CC )
3 chordthmlem2.B . . 3  |-  ( ph  ->  B  e.  CC )
4 chordthmlem2.Q . . 3  |-  ( ph  ->  Q  e.  CC )
5 chordthmlem2.M . . 3  |-  ( ph  ->  M  =  ( ( A  +  B )  /  2 ) )
6 chordthmlem2.ABequidistQ . . 3  |-  ( ph  ->  ( abs `  ( A  -  Q )
)  =  ( abs `  ( B  -  Q
) ) )
7 2re 10061 . . . . . . . . . 10  |-  2  e.  RR
87a1i 11 . . . . . . . . 9  |-  ( ph  ->  2  e.  RR )
9 2ne0 10075 . . . . . . . . . 10  |-  2  =/=  0
109a1i 11 . . . . . . . . 9  |-  ( ph  ->  2  =/=  0 )
118, 10rereccld 9833 . . . . . . . 8  |-  ( ph  ->  ( 1  /  2
)  e.  RR )
12 chordthmlem2.X . . . . . . . 8  |-  ( ph  ->  X  e.  RR )
1311, 12resubcld 9457 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
2 )  -  X
)  e.  RR )
1413recnd 9106 . . . . . 6  |-  ( ph  ->  ( ( 1  / 
2 )  -  X
)  e.  CC )
153, 2subcld 9403 . . . . . 6  |-  ( ph  ->  ( B  -  A
)  e.  CC )
1611recnd 9106 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  2
)  e.  CC )
1712recnd 9106 . . . . . . . . 9  |-  ( ph  ->  X  e.  CC )
1816, 17, 15subdird 9482 . . . . . . . 8  |-  ( ph  ->  ( ( ( 1  /  2 )  -  X )  x.  ( B  -  A )
)  =  ( ( ( 1  /  2
)  x.  ( B  -  A ) )  -  ( X  x.  ( B  -  A
) ) ) )
19 2cn 10062 . . . . . . . . . . . . . . 15  |-  2  e.  CC
2019a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  2  e.  CC )
213, 20, 10divcan4d 9788 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B  x.  2 )  /  2
)  =  B )
223times2d 10203 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  x.  2 )  =  ( B  +  B ) )
2322oveq1d 6088 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B  x.  2 )  /  2
)  =  ( ( B  +  B )  /  2 ) )
2421, 23eqtr3d 2469 . . . . . . . . . . . 12  |-  ( ph  ->  B  =  ( ( B  +  B )  /  2 ) )
2524, 5oveq12d 6091 . . . . . . . . . . 11  |-  ( ph  ->  ( B  -  M
)  =  ( ( ( B  +  B
)  /  2 )  -  ( ( A  +  B )  / 
2 ) ) )
263, 3addcld 9099 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  +  B
)  e.  CC )
272, 3addcld 9099 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  +  B
)  e.  CC )
2826, 27, 20, 10divsubdird 9821 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( B  +  B )  -  ( A  +  B
) )  /  2
)  =  ( ( ( B  +  B
)  /  2 )  -  ( ( A  +  B )  / 
2 ) ) )
293, 2, 3pnpcan2d 9441 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( B  +  B )  -  ( A  +  B )
)  =  ( B  -  A ) )
3029oveq1d 6088 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( B  +  B )  -  ( A  +  B
) )  /  2
)  =  ( ( B  -  A )  /  2 ) )
3125, 28, 303eqtr2d 2473 . . . . . . . . . 10  |-  ( ph  ->  ( B  -  M
)  =  ( ( B  -  A )  /  2 ) )
3215, 20, 10divrec2d 9786 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  -  A )  /  2
)  =  ( ( 1  /  2 )  x.  ( B  -  A ) ) )
3331, 32eqtrd 2467 . . . . . . . . 9  |-  ( ph  ->  ( B  -  M
)  =  ( ( 1  /  2 )  x.  ( B  -  A ) ) )
34 chordthmlem2.P . . . . . . . . . 10  |-  ( ph  ->  P  =  ( ( X  x.  A )  +  ( ( 1  -  X )  x.  B ) ) )
3517, 2mulcld 9100 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X  x.  A
)  e.  CC )
36 ax-1cn 9040 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
3736a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  1  e.  CC )
3837, 17subcld 9403 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1  -  X
)  e.  CC )
3938, 3mulcld 9100 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 1  -  X )  x.  B
)  e.  CC )
4035, 39addcld 9099 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( X  x.  A )  +  ( ( 1  -  X
)  x.  B ) )  e.  CC )
4134, 40eqeltrd 2509 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  CC )
422, 41, 3, 17affineequiv 20659 . . . . . . . . . 10  |-  ( ph  ->  ( P  =  ( ( X  x.  A
)  +  ( ( 1  -  X )  x.  B ) )  <-> 
( B  -  P
)  =  ( X  x.  ( B  -  A ) ) ) )
4334, 42mpbid 202 . . . . . . . . 9  |-  ( ph  ->  ( B  -  P
)  =  ( X  x.  ( B  -  A ) ) )
4433, 43oveq12d 6091 . . . . . . . 8  |-  ( ph  ->  ( ( B  -  M )  -  ( B  -  P )
)  =  ( ( ( 1  /  2
)  x.  ( B  -  A ) )  -  ( X  x.  ( B  -  A
) ) ) )
4527halfcld 10204 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  +  B )  /  2
)  e.  CC )
465, 45eqeltrd 2509 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
473, 46, 41nnncan1d 9437 . . . . . . . 8  |-  ( ph  ->  ( ( B  -  M )  -  ( B  -  P )
)  =  ( P  -  M ) )
4818, 44, 473eqtr2rd 2474 . . . . . . 7  |-  ( ph  ->  ( P  -  M
)  =  ( ( ( 1  /  2
)  -  X )  x.  ( B  -  A ) ) )
49 chordthmlem2.PneM . . . . . . . 8  |-  ( ph  ->  P  =/=  M )
5041, 46, 49subne0d 9412 . . . . . . 7  |-  ( ph  ->  ( P  -  M
)  =/=  0 )
5148, 50eqnetrrd 2618 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  2 )  -  X )  x.  ( B  -  A )
)  =/=  0 )
5214, 15, 51mulne0bbd 9668 . . . . 5  |-  ( ph  ->  ( B  -  A
)  =/=  0 )
533, 2, 52subne0ad 9414 . . . 4  |-  ( ph  ->  B  =/=  A )
5453necomd 2681 . . 3  |-  ( ph  ->  A  =/=  B )
55 chordthmlem2.QneM . . 3  |-  ( ph  ->  Q  =/=  M )
561, 2, 3, 4, 5, 6, 54, 55chordthmlem 20665 . 2  |-  ( ph  ->  ( ( Q  -  M ) F ( B  -  M ) )  e.  { ( pi  /  2 ) ,  -u ( pi  / 
2 ) } )
574, 46subcld 9403 . . 3  |-  ( ph  ->  ( Q  -  M
)  e.  CC )
5841, 46subcld 9403 . . 3  |-  ( ph  ->  ( P  -  M
)  e.  CC )
593, 46subcld 9403 . . 3  |-  ( ph  ->  ( B  -  M
)  e.  CC )
604, 46, 55subne0d 9412 . . 3  |-  ( ph  ->  ( Q  -  M
)  =/=  0 )
6120, 10recne0d 9776 . . . . 5  |-  ( ph  ->  ( 1  /  2
)  =/=  0 )
6216, 15, 61, 52mulne0d 9666 . . . 4  |-  ( ph  ->  ( ( 1  / 
2 )  x.  ( B  -  A )
)  =/=  0 )
6333, 62eqnetrd 2616 . . 3  |-  ( ph  ->  ( B  -  M
)  =/=  0 )
6433, 48oveq12d 6091 . . . . 5  |-  ( ph  ->  ( ( B  -  M )  /  ( P  -  M )
)  =  ( ( ( 1  /  2
)  x.  ( B  -  A ) )  /  ( ( ( 1  /  2 )  -  X )  x.  ( B  -  A
) ) ) )
6514, 15, 51mulne0bad 9667 . . . . . 6  |-  ( ph  ->  ( ( 1  / 
2 )  -  X
)  =/=  0 )
6616, 14, 15, 65, 52divcan5rd 9809 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  2 )  x.  ( B  -  A
) )  /  (
( ( 1  / 
2 )  -  X
)  x.  ( B  -  A ) ) )  =  ( ( 1  /  2 )  /  ( ( 1  /  2 )  -  X ) ) )
6764, 66eqtrd 2467 . . . 4  |-  ( ph  ->  ( ( B  -  M )  /  ( P  -  M )
)  =  ( ( 1  /  2 )  /  ( ( 1  /  2 )  -  X ) ) )
6811, 13, 65redivcld 9834 . . . 4  |-  ( ph  ->  ( ( 1  / 
2 )  /  (
( 1  /  2
)  -  X ) )  e.  RR )
6967, 68eqeltrd 2509 . . 3  |-  ( ph  ->  ( ( B  -  M )  /  ( P  -  M )
)  e.  RR )
701, 57, 58, 59, 60, 50, 63, 69angrtmuld 20642 . 2  |-  ( ph  ->  ( ( ( Q  -  M ) F ( P  -  M
) )  e.  {
( pi  /  2
) ,  -u (
pi  /  2 ) }  <->  ( ( Q  -  M ) F ( B  -  M
) )  e.  {
( pi  /  2
) ,  -u (
pi  /  2 ) } ) )
7156, 70mpbird 224 1  |-  ( ph  ->  ( ( Q  -  M ) F ( P  -  M ) )  e.  { ( pi  /  2 ) ,  -u ( pi  / 
2 ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725    =/= wne 2598    \ cdif 3309   {csn 3806   {cpr 3807   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    - cmin 9283   -ucneg 9284    / cdiv 9669   2c2 10041   Imcim 11895   abscabs 12031   picpi 12661   logclog 20444
This theorem is referenced by:  chordthmlem3  20667
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-ioc 10913  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-fac 11559  df-bc 11586  df-hash 11611  df-shft 11874  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-limsup 12257  df-clim 12274  df-rlim 12275  df-sum 12472  df-ef 12662  df-sin 12664  df-cos 12665  df-pi 12667  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-mulg 14807  df-cntz 15108  df-cmn 15406  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-lp 17192  df-perf 17193  df-cn 17283  df-cnp 17284  df-haus 17371  df-tx 17586  df-hmeo 17779  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964  df-xms 18342  df-ms 18343  df-tms 18344  df-cncf 18900  df-limc 19745  df-dv 19746  df-log 20446
  Copyright terms: Public domain W3C validator