MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem3 Unicode version

Theorem chordthmlem3 20147
Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then PQ 2 = QM 2  + PM 2 . This follows from chordthmlem2 20146 and the Pythagorean theorem (pythag 20131) in the case where P and Q are unequal to M. If either P or Q equals M, the result is trivial. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem3.A  |-  ( ph  ->  A  e.  CC )
chordthmlem3.B  |-  ( ph  ->  B  e.  CC )
chordthmlem3.Q  |-  ( ph  ->  Q  e.  CC )
chordthmlem3.X  |-  ( ph  ->  X  e.  RR )
chordthmlem3.M  |-  ( ph  ->  M  =  ( ( A  +  B )  /  2 ) )
chordthmlem3.P  |-  ( ph  ->  P  =  ( ( X  x.  A )  +  ( ( 1  -  X )  x.  B ) ) )
chordthmlem3.ABequidistQ  |-  ( ph  ->  ( abs `  ( A  -  Q )
)  =  ( abs `  ( B  -  Q
) ) )
Assertion
Ref Expression
chordthmlem3  |-  ( ph  ->  ( ( abs `  ( P  -  Q )
) ^ 2 )  =  ( ( ( abs `  ( Q  -  M ) ) ^ 2 )  +  ( ( abs `  ( P  -  M )
) ^ 2 ) ) )

Proof of Theorem chordthmlem3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chordthmlem3.Q . . . . . . . . 9  |-  ( ph  ->  Q  e.  CC )
2 chordthmlem3.M . . . . . . . . . 10  |-  ( ph  ->  M  =  ( ( A  +  B )  /  2 ) )
3 chordthmlem3.A . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  CC )
4 chordthmlem3.B . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  CC )
53, 4addcld 8870 . . . . . . . . . . 11  |-  ( ph  ->  ( A  +  B
)  e.  CC )
65halfcld 9972 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  +  B )  /  2
)  e.  CC )
72, 6eqeltrd 2370 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
81, 7subcld 9173 . . . . . . . 8  |-  ( ph  ->  ( Q  -  M
)  e.  CC )
98abscld 11934 . . . . . . 7  |-  ( ph  ->  ( abs `  ( Q  -  M )
)  e.  RR )
109recnd 8877 . . . . . 6  |-  ( ph  ->  ( abs `  ( Q  -  M )
)  e.  CC )
1110sqcld 11259 . . . . 5  |-  ( ph  ->  ( ( abs `  ( Q  -  M )
) ^ 2 )  e.  CC )
1211adantr 451 . . . 4  |-  ( (
ph  /\  P  =  M )  ->  (
( abs `  ( Q  -  M )
) ^ 2 )  e.  CC )
1312addid1d 9028 . . 3  |-  ( (
ph  /\  P  =  M )  ->  (
( ( abs `  ( Q  -  M )
) ^ 2 )  +  0 )  =  ( ( abs `  ( Q  -  M )
) ^ 2 ) )
14 chordthmlem3.P . . . . . . . . 9  |-  ( ph  ->  P  =  ( ( X  x.  A )  +  ( ( 1  -  X )  x.  B ) ) )
15 chordthmlem3.X . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  RR )
1615recnd 8877 . . . . . . . . . . 11  |-  ( ph  ->  X  e.  CC )
1716, 3mulcld 8871 . . . . . . . . . 10  |-  ( ph  ->  ( X  x.  A
)  e.  CC )
18 ax-1cn 8811 . . . . . . . . . . . . 13  |-  1  e.  CC
1918a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  CC )
2019, 16subcld 9173 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  -  X
)  e.  CC )
2120, 4mulcld 8871 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  -  X )  x.  B
)  e.  CC )
2217, 21addcld 8870 . . . . . . . . 9  |-  ( ph  ->  ( ( X  x.  A )  +  ( ( 1  -  X
)  x.  B ) )  e.  CC )
2314, 22eqeltrd 2370 . . . . . . . 8  |-  ( ph  ->  P  e.  CC )
2423adantr 451 . . . . . . 7  |-  ( (
ph  /\  P  =  M )  ->  P  e.  CC )
25 simpr 447 . . . . . . 7  |-  ( (
ph  /\  P  =  M )  ->  P  =  M )
2624, 25subeq0bd 9225 . . . . . 6  |-  ( (
ph  /\  P  =  M )  ->  ( P  -  M )  =  0 )
2726abs00bd 11792 . . . . 5  |-  ( (
ph  /\  P  =  M )  ->  ( abs `  ( P  -  M ) )  =  0 )
2827sq0id 11213 . . . 4  |-  ( (
ph  /\  P  =  M )  ->  (
( abs `  ( P  -  M )
) ^ 2 )  =  0 )
2928oveq2d 5890 . . 3  |-  ( (
ph  /\  P  =  M )  ->  (
( ( abs `  ( Q  -  M )
) ^ 2 )  +  ( ( abs `  ( P  -  M
) ) ^ 2 ) )  =  ( ( ( abs `  ( Q  -  M )
) ^ 2 )  +  0 ) )
301adantr 451 . . . . . 6  |-  ( (
ph  /\  P  =  M )  ->  Q  e.  CC )
3130, 24abssubd 11951 . . . . 5  |-  ( (
ph  /\  P  =  M )  ->  ( abs `  ( Q  -  P ) )  =  ( abs `  ( P  -  Q )
) )
3225oveq2d 5890 . . . . . 6  |-  ( (
ph  /\  P  =  M )  ->  ( Q  -  P )  =  ( Q  -  M ) )
3332fveq2d 5545 . . . . 5  |-  ( (
ph  /\  P  =  M )  ->  ( abs `  ( Q  -  P ) )  =  ( abs `  ( Q  -  M )
) )
3431, 33eqtr3d 2330 . . . 4  |-  ( (
ph  /\  P  =  M )  ->  ( abs `  ( P  -  Q ) )  =  ( abs `  ( Q  -  M )
) )
3534oveq1d 5889 . . 3  |-  ( (
ph  /\  P  =  M )  ->  (
( abs `  ( P  -  Q )
) ^ 2 )  =  ( ( abs `  ( Q  -  M
) ) ^ 2 ) )
3613, 29, 353eqtr4rd 2339 . 2  |-  ( (
ph  /\  P  =  M )  ->  (
( abs `  ( P  -  Q )
) ^ 2 )  =  ( ( ( abs `  ( Q  -  M ) ) ^ 2 )  +  ( ( abs `  ( P  -  M )
) ^ 2 ) ) )
3723, 7subcld 9173 . . . . . . . 8  |-  ( ph  ->  ( P  -  M
)  e.  CC )
3837abscld 11934 . . . . . . 7  |-  ( ph  ->  ( abs `  ( P  -  M )
)  e.  RR )
3938recnd 8877 . . . . . 6  |-  ( ph  ->  ( abs `  ( P  -  M )
)  e.  CC )
4039sqcld 11259 . . . . 5  |-  ( ph  ->  ( ( abs `  ( P  -  M )
) ^ 2 )  e.  CC )
4140adantr 451 . . . 4  |-  ( (
ph  /\  Q  =  M )  ->  (
( abs `  ( P  -  M )
) ^ 2 )  e.  CC )
4241addid2d 9029 . . 3  |-  ( (
ph  /\  Q  =  M )  ->  (
0  +  ( ( abs `  ( P  -  M ) ) ^ 2 ) )  =  ( ( abs `  ( P  -  M
) ) ^ 2 ) )
431adantr 451 . . . . . . 7  |-  ( (
ph  /\  Q  =  M )  ->  Q  e.  CC )
44 simpr 447 . . . . . . 7  |-  ( (
ph  /\  Q  =  M )  ->  Q  =  M )
4543, 44subeq0bd 9225 . . . . . 6  |-  ( (
ph  /\  Q  =  M )  ->  ( Q  -  M )  =  0 )
4645abs00bd 11792 . . . . 5  |-  ( (
ph  /\  Q  =  M )  ->  ( abs `  ( Q  -  M ) )  =  0 )
4746sq0id 11213 . . . 4  |-  ( (
ph  /\  Q  =  M )  ->  (
( abs `  ( Q  -  M )
) ^ 2 )  =  0 )
4847oveq1d 5889 . . 3  |-  ( (
ph  /\  Q  =  M )  ->  (
( ( abs `  ( Q  -  M )
) ^ 2 )  +  ( ( abs `  ( P  -  M
) ) ^ 2 ) )  =  ( 0  +  ( ( abs `  ( P  -  M ) ) ^ 2 ) ) )
4944oveq2d 5890 . . . . 5  |-  ( (
ph  /\  Q  =  M )  ->  ( P  -  Q )  =  ( P  -  M ) )
5049fveq2d 5545 . . . 4  |-  ( (
ph  /\  Q  =  M )  ->  ( abs `  ( P  -  Q ) )  =  ( abs `  ( P  -  M )
) )
5150oveq1d 5889 . . 3  |-  ( (
ph  /\  Q  =  M )  ->  (
( abs `  ( P  -  Q )
) ^ 2 )  =  ( ( abs `  ( P  -  M
) ) ^ 2 ) )
5242, 48, 513eqtr4rd 2339 . 2  |-  ( (
ph  /\  Q  =  M )  ->  (
( abs `  ( P  -  Q )
) ^ 2 )  =  ( ( ( abs `  ( Q  -  M ) ) ^ 2 )  +  ( ( abs `  ( P  -  M )
) ^ 2 ) ) )
5323adantr 451 . . 3  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  P  e.  CC )
541adantr 451 . . 3  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  Q  e.  CC )
557adantr 451 . . 3  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  M  e.  CC )
56 simprl 732 . . 3  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  P  =/=  M )
57 simprr 733 . . 3  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  Q  =/=  M )
58 eqid 2296 . . . 4  |-  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } )  |->  ( Im
`  ( log `  (
y  /  x ) ) ) )  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
593adantr 451 . . . 4  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  A  e.  CC )
604adantr 451 . . . 4  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  B  e.  CC )
6115adantr 451 . . . 4  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  X  e.  RR )
622adantr 451 . . . 4  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  M  =  ( ( A  +  B )  /  2 ) )
6314adantr 451 . . . 4  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  P  =  ( ( X  x.  A )  +  ( ( 1  -  X )  x.  B ) ) )
64 chordthmlem3.ABequidistQ . . . . 5  |-  ( ph  ->  ( abs `  ( A  -  Q )
)  =  ( abs `  ( B  -  Q
) ) )
6564adantr 451 . . . 4  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  -> 
( abs `  ( A  -  Q )
)  =  ( abs `  ( B  -  Q
) ) )
6658, 59, 60, 54, 61, 62, 63, 65, 56, 57chordthmlem2 20146 . . 3  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  -> 
( ( Q  -  M ) ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } )  |->  ( Im
`  ( log `  (
y  /  x ) ) ) ) ( P  -  M ) )  e.  { ( pi  /  2 ) ,  -u ( pi  / 
2 ) } )
67 eqid 2296 . . . 4  |-  ( abs `  ( Q  -  M
) )  =  ( abs `  ( Q  -  M ) )
68 eqid 2296 . . . 4  |-  ( abs `  ( P  -  M
) )  =  ( abs `  ( P  -  M ) )
69 eqid 2296 . . . 4  |-  ( abs `  ( P  -  Q
) )  =  ( abs `  ( P  -  Q ) )
70 eqid 2296 . . . 4  |-  ( ( Q  -  M ) ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) ) ( P  -  M ) )  =  ( ( Q  -  M ) ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } )  |->  ( Im
`  ( log `  (
y  /  x ) ) ) ) ( P  -  M ) )
7158, 67, 68, 69, 70pythag 20131 . . 3  |-  ( ( ( P  e.  CC  /\  Q  e.  CC  /\  M  e.  CC )  /\  ( P  =/=  M  /\  Q  =/=  M
)  /\  ( ( Q  -  M )
( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) ) ( P  -  M ) )  e. 
{ ( pi  / 
2 ) ,  -u ( pi  /  2
) } )  -> 
( ( abs `  ( P  -  Q )
) ^ 2 )  =  ( ( ( abs `  ( Q  -  M ) ) ^ 2 )  +  ( ( abs `  ( P  -  M )
) ^ 2 ) ) )
7253, 54, 55, 56, 57, 66, 71syl321anc 1204 . 2  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  -> 
( ( abs `  ( P  -  Q )
) ^ 2 )  =  ( ( ( abs `  ( Q  -  M ) ) ^ 2 )  +  ( ( abs `  ( P  -  M )
) ^ 2 ) ) )
7336, 52, 72pm2.61da2ne 2538 1  |-  ( ph  ->  ( ( abs `  ( P  -  Q )
) ^ 2 )  =  ( ( ( abs `  ( Q  -  M ) ) ^ 2 )  +  ( ( abs `  ( P  -  M )
) ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459    \ cdif 3162   {csn 3653   {cpr 3654   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    - cmin 9053   -ucneg 9054    / cdiv 9439   2c2 9811   ^cexp 11120   Imcim 11599   abscabs 11735   picpi 12364   logclog 19928
This theorem is referenced by:  chordthmlem5  20149
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-pi 12370  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930
  Copyright terms: Public domain W3C validator