MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem4 Unicode version

Theorem chordthmlem4 20127
Description: If P is on the segment AB and M is the midpoint of AB, then PA  x. PB = BM 2  - PM 2 . If all lengths are reexpressed as fractions of AB, this reduces to the identity  X  x.  (
1  -  X )  =  ( 1  / 
2 ) 2  -  ( ( 1  /  2 )  -  X ) 2 . (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem4.A  |-  ( ph  ->  A  e.  CC )
chordthmlem4.B  |-  ( ph  ->  B  e.  CC )
chordthmlem4.X  |-  ( ph  ->  X  e.  ( 0 [,] 1 ) )
chordthmlem4.M  |-  ( ph  ->  M  =  ( ( A  +  B )  /  2 ) )
chordthmlem4.P  |-  ( ph  ->  P  =  ( ( X  x.  A )  +  ( ( 1  -  X )  x.  B ) ) )
Assertion
Ref Expression
chordthmlem4  |-  ( ph  ->  ( ( abs `  ( P  -  A )
)  x.  ( abs `  ( P  -  B
) ) )  =  ( ( ( abs `  ( B  -  M
) ) ^ 2 )  -  ( ( abs `  ( P  -  M ) ) ^ 2 ) ) )

Proof of Theorem chordthmlem4
StepHypRef Expression
1 1re 8833 . . . . . . . . 9  |-  1  e.  RR
21a1i 12 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
3 unitssre 10776 . . . . . . . . 9  |-  ( 0 [,] 1 )  C_  RR
4 chordthmlem4.X . . . . . . . . 9  |-  ( ph  ->  X  e.  ( 0 [,] 1 ) )
53, 4sseldi 3180 . . . . . . . 8  |-  ( ph  ->  X  e.  RR )
62, 5resubcld 9207 . . . . . . 7  |-  ( ph  ->  ( 1  -  X
)  e.  RR )
76recnd 8857 . . . . . 6  |-  ( ph  ->  ( 1  -  X
)  e.  CC )
87abscld 11913 . . . . 5  |-  ( ph  ->  ( abs `  (
1  -  X ) )  e.  RR )
98recnd 8857 . . . 4  |-  ( ph  ->  ( abs `  (
1  -  X ) )  e.  CC )
10 chordthmlem4.B . . . . . . 7  |-  ( ph  ->  B  e.  CC )
11 chordthmlem4.A . . . . . . 7  |-  ( ph  ->  A  e.  CC )
1210, 11subcld 9153 . . . . . 6  |-  ( ph  ->  ( B  -  A
)  e.  CC )
1312abscld 11913 . . . . 5  |-  ( ph  ->  ( abs `  ( B  -  A )
)  e.  RR )
1413recnd 8857 . . . 4  |-  ( ph  ->  ( abs `  ( B  -  A )
)  e.  CC )
155recnd 8857 . . . . . 6  |-  ( ph  ->  X  e.  CC )
1615abscld 11913 . . . . 5  |-  ( ph  ->  ( abs `  X
)  e.  RR )
1716recnd 8857 . . . 4  |-  ( ph  ->  ( abs `  X
)  e.  CC )
189, 14, 17, 14mul4d 9020 . . 3  |-  ( ph  ->  ( ( ( abs `  ( 1  -  X
) )  x.  ( abs `  ( B  -  A ) ) )  x.  ( ( abs `  X )  x.  ( abs `  ( B  -  A ) ) ) )  =  ( ( ( abs `  (
1  -  X ) )  x.  ( abs `  X ) )  x.  ( ( abs `  ( B  -  A )
)  x.  ( abs `  ( B  -  A
) ) ) ) )
19 chordthmlem4.P . . . . . . 7  |-  ( ph  ->  P  =  ( ( X  x.  A )  +  ( ( 1  -  X )  x.  B ) ) )
2015, 11mulcld 8851 . . . . . . . . . 10  |-  ( ph  ->  ( X  x.  A
)  e.  CC )
217, 10mulcld 8851 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  -  X )  x.  B
)  e.  CC )
2220, 21addcld 8850 . . . . . . . . 9  |-  ( ph  ->  ( ( X  x.  A )  +  ( ( 1  -  X
)  x.  B ) )  e.  CC )
2319, 22eqeltrd 2359 . . . . . . . 8  |-  ( ph  ->  P  e.  CC )
2411, 23, 10, 15affineequiv2 20119 . . . . . . 7  |-  ( ph  ->  ( P  =  ( ( X  x.  A
)  +  ( ( 1  -  X )  x.  B ) )  <-> 
( P  -  A
)  =  ( ( 1  -  X )  x.  ( B  -  A ) ) ) )
2519, 24mpbid 203 . . . . . 6  |-  ( ph  ->  ( P  -  A
)  =  ( ( 1  -  X )  x.  ( B  -  A ) ) )
2625fveq2d 5490 . . . . 5  |-  ( ph  ->  ( abs `  ( P  -  A )
)  =  ( abs `  ( ( 1  -  X )  x.  ( B  -  A )
) ) )
277, 12absmuld 11931 . . . . 5  |-  ( ph  ->  ( abs `  (
( 1  -  X
)  x.  ( B  -  A ) ) )  =  ( ( abs `  ( 1  -  X ) )  x.  ( abs `  ( B  -  A )
) ) )
2826, 27eqtrd 2317 . . . 4  |-  ( ph  ->  ( abs `  ( P  -  A )
)  =  ( ( abs `  ( 1  -  X ) )  x.  ( abs `  ( B  -  A )
) ) )
2923, 10abssubd 11930 . . . . 5  |-  ( ph  ->  ( abs `  ( P  -  B )
)  =  ( abs `  ( B  -  P
) ) )
3011, 23, 10, 15affineequiv 20118 . . . . . . 7  |-  ( ph  ->  ( P  =  ( ( X  x.  A
)  +  ( ( 1  -  X )  x.  B ) )  <-> 
( B  -  P
)  =  ( X  x.  ( B  -  A ) ) ) )
3119, 30mpbid 203 . . . . . 6  |-  ( ph  ->  ( B  -  P
)  =  ( X  x.  ( B  -  A ) ) )
3231fveq2d 5490 . . . . 5  |-  ( ph  ->  ( abs `  ( B  -  P )
)  =  ( abs `  ( X  x.  ( B  -  A )
) ) )
3315, 12absmuld 11931 . . . . 5  |-  ( ph  ->  ( abs `  ( X  x.  ( B  -  A ) ) )  =  ( ( abs `  X )  x.  ( abs `  ( B  -  A ) ) ) )
3429, 32, 333eqtrd 2321 . . . 4  |-  ( ph  ->  ( abs `  ( P  -  B )
)  =  ( ( abs `  X )  x.  ( abs `  ( B  -  A )
) ) )
3528, 34oveq12d 5838 . . 3  |-  ( ph  ->  ( ( abs `  ( P  -  A )
)  x.  ( abs `  ( P  -  B
) ) )  =  ( ( ( abs `  ( 1  -  X
) )  x.  ( abs `  ( B  -  A ) ) )  x.  ( ( abs `  X )  x.  ( abs `  ( B  -  A ) ) ) ) )
3614sqvald 11237 . . . 4  |-  ( ph  ->  ( ( abs `  ( B  -  A )
) ^ 2 )  =  ( ( abs `  ( B  -  A
) )  x.  ( abs `  ( B  -  A ) ) ) )
3736oveq2d 5836 . . 3  |-  ( ph  ->  ( ( ( abs `  ( 1  -  X
) )  x.  ( abs `  X ) )  x.  ( ( abs `  ( B  -  A
) ) ^ 2 ) )  =  ( ( ( abs `  (
1  -  X ) )  x.  ( abs `  X ) )  x.  ( ( abs `  ( B  -  A )
)  x.  ( abs `  ( B  -  A
) ) ) ) )
3818, 35, 373eqtr4d 2327 . 2  |-  ( ph  ->  ( ( abs `  ( P  -  A )
)  x.  ( abs `  ( P  -  B
) ) )  =  ( ( ( abs `  ( 1  -  X
) )  x.  ( abs `  X ) )  x.  ( ( abs `  ( B  -  A
) ) ^ 2 ) ) )
392recnd 8857 . . . . . 6  |-  ( ph  ->  1  e.  CC )
4039halfcld 9952 . . . . 5  |-  ( ph  ->  ( 1  /  2
)  e.  CC )
4140sqcld 11238 . . . 4  |-  ( ph  ->  ( ( 1  / 
2 ) ^ 2 )  e.  CC )
422rehalfcld 9954 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  2
)  e.  RR )
4342, 5resubcld 9207 . . . . . . . 8  |-  ( ph  ->  ( ( 1  / 
2 )  -  X
)  e.  RR )
4443recnd 8857 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
2 )  -  X
)  e.  CC )
4544abscld 11913 . . . . . 6  |-  ( ph  ->  ( abs `  (
( 1  /  2
)  -  X ) )  e.  RR )
4645recnd 8857 . . . . 5  |-  ( ph  ->  ( abs `  (
( 1  /  2
)  -  X ) )  e.  CC )
4746sqcld 11238 . . . 4  |-  ( ph  ->  ( ( abs `  (
( 1  /  2
)  -  X ) ) ^ 2 )  e.  CC )
4814sqcld 11238 . . . 4  |-  ( ph  ->  ( ( abs `  ( B  -  A )
) ^ 2 )  e.  CC )
4941, 47, 48subdird 9232 . . 3  |-  ( ph  ->  ( ( ( ( 1  /  2 ) ^ 2 )  -  ( ( abs `  (
( 1  /  2
)  -  X ) ) ^ 2 ) )  x.  ( ( abs `  ( B  -  A ) ) ^ 2 ) )  =  ( ( ( ( 1  /  2
) ^ 2 )  x.  ( ( abs `  ( B  -  A
) ) ^ 2 ) )  -  (
( ( abs `  (
( 1  /  2
)  -  X ) ) ^ 2 )  x.  ( ( abs `  ( B  -  A
) ) ^ 2 ) ) ) )
50 subsq 11205 . . . . . . 7  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( ( 1  / 
2 )  -  X
)  e.  CC )  ->  ( ( ( 1  /  2 ) ^ 2 )  -  ( ( ( 1  /  2 )  -  X ) ^ 2 ) )  =  ( ( ( 1  / 
2 )  +  ( ( 1  /  2
)  -  X ) )  x.  ( ( 1  /  2 )  -  ( ( 1  /  2 )  -  X ) ) ) )
5140, 44, 50syl2anc 644 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  2 ) ^
2 )  -  (
( ( 1  / 
2 )  -  X
) ^ 2 ) )  =  ( ( ( 1  /  2
)  +  ( ( 1  /  2 )  -  X ) )  x.  ( ( 1  /  2 )  -  ( ( 1  / 
2 )  -  X
) ) ) )
5240, 40, 15addsubassd 9173 . . . . . . . 8  |-  ( ph  ->  ( ( ( 1  /  2 )  +  ( 1  /  2
) )  -  X
)  =  ( ( 1  /  2 )  +  ( ( 1  /  2 )  -  X ) ) )
53392halvesd 9953 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  / 
2 )  +  ( 1  /  2 ) )  =  1 )
5453oveq1d 5835 . . . . . . . 8  |-  ( ph  ->  ( ( ( 1  /  2 )  +  ( 1  /  2
) )  -  X
)  =  ( 1  -  X ) )
5552, 54eqtr3d 2319 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
2 )  +  ( ( 1  /  2
)  -  X ) )  =  ( 1  -  X ) )
5640, 15nncand 9158 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
2 )  -  (
( 1  /  2
)  -  X ) )  =  X )
5755, 56oveq12d 5838 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  2 )  +  ( ( 1  / 
2 )  -  X
) )  x.  (
( 1  /  2
)  -  ( ( 1  /  2 )  -  X ) ) )  =  ( ( 1  -  X )  x.  X ) )
5851, 57eqtr2d 2318 . . . . 5  |-  ( ph  ->  ( ( 1  -  X )  x.  X
)  =  ( ( ( 1  /  2
) ^ 2 )  -  ( ( ( 1  /  2 )  -  X ) ^
2 ) ) )
59 0re 8834 . . . . . . . . . 10  |-  0  e.  RR
6059, 1elicc2i 10711 . . . . . . . . 9  |-  ( X  e.  ( 0 [,] 1 )  <->  ( X  e.  RR  /\  0  <_  X  /\  X  <_  1
) )
614, 60sylib 190 . . . . . . . 8  |-  ( ph  ->  ( X  e.  RR  /\  0  <_  X  /\  X  <_  1 ) )
6261simp3d 971 . . . . . . 7  |-  ( ph  ->  X  <_  1 )
635, 2, 62abssubge0d 11909 . . . . . 6  |-  ( ph  ->  ( abs `  (
1  -  X ) )  =  ( 1  -  X ) )
6461simp2d 970 . . . . . . 7  |-  ( ph  ->  0  <_  X )
655, 64absidd 11900 . . . . . 6  |-  ( ph  ->  ( abs `  X
)  =  X )
6663, 65oveq12d 5838 . . . . 5  |-  ( ph  ->  ( ( abs `  (
1  -  X ) )  x.  ( abs `  X ) )  =  ( ( 1  -  X )  x.  X
) )
67 absresq 11782 . . . . . . 7  |-  ( ( ( 1  /  2
)  -  X )  e.  RR  ->  (
( abs `  (
( 1  /  2
)  -  X ) ) ^ 2 )  =  ( ( ( 1  /  2 )  -  X ) ^
2 ) )
6843, 67syl 17 . . . . . 6  |-  ( ph  ->  ( ( abs `  (
( 1  /  2
)  -  X ) ) ^ 2 )  =  ( ( ( 1  /  2 )  -  X ) ^
2 ) )
6968oveq2d 5836 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  2 ) ^
2 )  -  (
( abs `  (
( 1  /  2
)  -  X ) ) ^ 2 ) )  =  ( ( ( 1  /  2
) ^ 2 )  -  ( ( ( 1  /  2 )  -  X ) ^
2 ) ) )
7058, 66, 693eqtr4d 2327 . . . 4  |-  ( ph  ->  ( ( abs `  (
1  -  X ) )  x.  ( abs `  X ) )  =  ( ( ( 1  /  2 ) ^
2 )  -  (
( abs `  (
( 1  /  2
)  -  X ) ) ^ 2 ) ) )
7170oveq1d 5835 . . 3  |-  ( ph  ->  ( ( ( abs `  ( 1  -  X
) )  x.  ( abs `  X ) )  x.  ( ( abs `  ( B  -  A
) ) ^ 2 ) )  =  ( ( ( ( 1  /  2 ) ^
2 )  -  (
( abs `  (
( 1  /  2
)  -  X ) ) ^ 2 ) )  x.  ( ( abs `  ( B  -  A ) ) ^ 2 ) ) )
72 2cn 9812 . . . . . . . . . . . . . 14  |-  2  e.  CC
7372a1i 12 . . . . . . . . . . . . 13  |-  ( ph  ->  2  e.  CC )
74 2ne0 9825 . . . . . . . . . . . . . 14  |-  2  =/=  0
7574a1i 12 . . . . . . . . . . . . 13  |-  ( ph  ->  2  =/=  0 )
7610, 73, 75divcan4d 9538 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( B  x.  2 )  /  2
)  =  B )
7710times2d 9951 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B  x.  2 )  =  ( B  +  B ) )
7877oveq1d 5835 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( B  x.  2 )  /  2
)  =  ( ( B  +  B )  /  2 ) )
7976, 78eqtr3d 2319 . . . . . . . . . . 11  |-  ( ph  ->  B  =  ( ( B  +  B )  /  2 ) )
80 chordthmlem4.M . . . . . . . . . . 11  |-  ( ph  ->  M  =  ( ( A  +  B )  /  2 ) )
8179, 80oveq12d 5838 . . . . . . . . . 10  |-  ( ph  ->  ( B  -  M
)  =  ( ( ( B  +  B
)  /  2 )  -  ( ( A  +  B )  / 
2 ) ) )
8210, 10addcld 8850 . . . . . . . . . . 11  |-  ( ph  ->  ( B  +  B
)  e.  CC )
8311, 10addcld 8850 . . . . . . . . . . 11  |-  ( ph  ->  ( A  +  B
)  e.  CC )
8482, 83, 73, 75divsubdird 9571 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( B  +  B )  -  ( A  +  B
) )  /  2
)  =  ( ( ( B  +  B
)  /  2 )  -  ( ( A  +  B )  / 
2 ) ) )
8510, 11, 10pnpcan2d 9191 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B  +  B )  -  ( A  +  B )
)  =  ( B  -  A ) )
8685oveq1d 5835 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( B  +  B )  -  ( A  +  B
) )  /  2
)  =  ( ( B  -  A )  /  2 ) )
8781, 84, 863eqtr2d 2323 . . . . . . . . 9  |-  ( ph  ->  ( B  -  M
)  =  ( ( B  -  A )  /  2 ) )
8812, 73, 75divrec2d 9536 . . . . . . . . 9  |-  ( ph  ->  ( ( B  -  A )  /  2
)  =  ( ( 1  /  2 )  x.  ( B  -  A ) ) )
8987, 88eqtrd 2317 . . . . . . . 8  |-  ( ph  ->  ( B  -  M
)  =  ( ( 1  /  2 )  x.  ( B  -  A ) ) )
9089fveq2d 5490 . . . . . . 7  |-  ( ph  ->  ( abs `  ( B  -  M )
)  =  ( abs `  ( ( 1  / 
2 )  x.  ( B  -  A )
) ) )
9140, 12absmuld 11931 . . . . . . 7  |-  ( ph  ->  ( abs `  (
( 1  /  2
)  x.  ( B  -  A ) ) )  =  ( ( abs `  ( 1  /  2 ) )  x.  ( abs `  ( B  -  A )
) ) )
9259a1i 12 . . . . . . . . . 10  |-  ( ph  ->  0  e.  RR )
93 halfgt0 9928 . . . . . . . . . . 11  |-  0  <  ( 1  /  2
)
9493a1i 12 . . . . . . . . . 10  |-  ( ph  ->  0  <  ( 1  /  2 ) )
9592, 42, 94ltled 8963 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( 1  /  2 ) )
9642, 95absidd 11900 . . . . . . . 8  |-  ( ph  ->  ( abs `  (
1  /  2 ) )  =  ( 1  /  2 ) )
9796oveq1d 5835 . . . . . . 7  |-  ( ph  ->  ( ( abs `  (
1  /  2 ) )  x.  ( abs `  ( B  -  A
) ) )  =  ( ( 1  / 
2 )  x.  ( abs `  ( B  -  A ) ) ) )
9890, 91, 973eqtrd 2321 . . . . . 6  |-  ( ph  ->  ( abs `  ( B  -  M )
)  =  ( ( 1  /  2 )  x.  ( abs `  ( B  -  A )
) ) )
9998oveq1d 5835 . . . . 5  |-  ( ph  ->  ( ( abs `  ( B  -  M )
) ^ 2 )  =  ( ( ( 1  /  2 )  x.  ( abs `  ( B  -  A )
) ) ^ 2 ) )
10040, 14sqmuld 11252 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  2 )  x.  ( abs `  ( B  -  A )
) ) ^ 2 )  =  ( ( ( 1  /  2
) ^ 2 )  x.  ( ( abs `  ( B  -  A
) ) ^ 2 ) ) )
10199, 100eqtrd 2317 . . . 4  |-  ( ph  ->  ( ( abs `  ( B  -  M )
) ^ 2 )  =  ( ( ( 1  /  2 ) ^ 2 )  x.  ( ( abs `  ( B  -  A )
) ^ 2 ) ) )
10240, 15, 12subdird 9232 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 1  /  2 )  -  X )  x.  ( B  -  A )
)  =  ( ( ( 1  /  2
)  x.  ( B  -  A ) )  -  ( X  x.  ( B  -  A
) ) ) )
10389, 31oveq12d 5838 . . . . . . . . 9  |-  ( ph  ->  ( ( B  -  M )  -  ( B  -  P )
)  =  ( ( ( 1  /  2
)  x.  ( B  -  A ) )  -  ( X  x.  ( B  -  A
) ) ) )
10483halfcld 9952 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  +  B )  /  2
)  e.  CC )
10580, 104eqeltrd 2359 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
10610, 105, 23nnncan1d 9187 . . . . . . . . 9  |-  ( ph  ->  ( ( B  -  M )  -  ( B  -  P )
)  =  ( P  -  M ) )
107102, 103, 1063eqtr2rd 2324 . . . . . . . 8  |-  ( ph  ->  ( P  -  M
)  =  ( ( ( 1  /  2
)  -  X )  x.  ( B  -  A ) ) )
108107fveq2d 5490 . . . . . . 7  |-  ( ph  ->  ( abs `  ( P  -  M )
)  =  ( abs `  ( ( ( 1  /  2 )  -  X )  x.  ( B  -  A )
) ) )
10944, 12absmuld 11931 . . . . . . 7  |-  ( ph  ->  ( abs `  (
( ( 1  / 
2 )  -  X
)  x.  ( B  -  A ) ) )  =  ( ( abs `  ( ( 1  /  2 )  -  X ) )  x.  ( abs `  ( B  -  A )
) ) )
110108, 109eqtrd 2317 . . . . . 6  |-  ( ph  ->  ( abs `  ( P  -  M )
)  =  ( ( abs `  ( ( 1  /  2 )  -  X ) )  x.  ( abs `  ( B  -  A )
) ) )
111110oveq1d 5835 . . . . 5  |-  ( ph  ->  ( ( abs `  ( P  -  M )
) ^ 2 )  =  ( ( ( abs `  ( ( 1  /  2 )  -  X ) )  x.  ( abs `  ( B  -  A )
) ) ^ 2 ) )
11246, 14sqmuld 11252 . . . . 5  |-  ( ph  ->  ( ( ( abs `  ( ( 1  / 
2 )  -  X
) )  x.  ( abs `  ( B  -  A ) ) ) ^ 2 )  =  ( ( ( abs `  ( ( 1  / 
2 )  -  X
) ) ^ 2 )  x.  ( ( abs `  ( B  -  A ) ) ^ 2 ) ) )
113111, 112eqtrd 2317 . . . 4  |-  ( ph  ->  ( ( abs `  ( P  -  M )
) ^ 2 )  =  ( ( ( abs `  ( ( 1  /  2 )  -  X ) ) ^ 2 )  x.  ( ( abs `  ( B  -  A )
) ^ 2 ) ) )
114101, 113oveq12d 5838 . . 3  |-  ( ph  ->  ( ( ( abs `  ( B  -  M
) ) ^ 2 )  -  ( ( abs `  ( P  -  M ) ) ^ 2 ) )  =  ( ( ( ( 1  /  2
) ^ 2 )  x.  ( ( abs `  ( B  -  A
) ) ^ 2 ) )  -  (
( ( abs `  (
( 1  /  2
)  -  X ) ) ^ 2 )  x.  ( ( abs `  ( B  -  A
) ) ^ 2 ) ) ) )
11549, 71, 1143eqtr4rd 2328 . 2  |-  ( ph  ->  ( ( ( abs `  ( B  -  M
) ) ^ 2 )  -  ( ( abs `  ( P  -  M ) ) ^ 2 ) )  =  ( ( ( abs `  ( 1  -  X ) )  x.  ( abs `  X
) )  x.  (
( abs `  ( B  -  A )
) ^ 2 ) ) )
11638, 115eqtr4d 2320 1  |-  ( ph  ->  ( ( abs `  ( P  -  A )
)  x.  ( abs `  ( P  -  B
) ) )  =  ( ( ( abs `  ( B  -  M
) ) ^ 2 )  -  ( ( abs `  ( P  -  M ) ) ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ w3a 936    = wceq 1624    e. wcel 1685    =/= wne 2448   class class class wbr 4025   ` cfv 5222  (class class class)co 5820   CCcc 8731   RRcr 8732   0cc0 8733   1c1 8734    + caddc 8736    x. cmul 8738    < clt 8863    <_ cle 8864    - cmin 9033    / cdiv 9419   2c2 9791   [,]cicc 10654   ^cexp 11099   abscabs 11714
This theorem is referenced by:  chordthmlem5  20128
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-sup 7190  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-n0 9962  df-z 10021  df-uz 10227  df-rp 10351  df-icc 10658  df-seq 11042  df-exp 11100  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716
  Copyright terms: Public domain W3C validator