MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem4 Unicode version

Theorem chordthmlem4 20080
Description: If P is on the segment AB and M is the midpoint of AB, then PA  x. PB = BM 2  - PM 2 . If all lengths are reexpressed as fractions of AB, this reduces to the identity  X  x.  (
1  -  X )  =  ( 1  / 
2 ) 2  -  ( ( 1  /  2 )  -  X ) 2 . (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem4.A  |-  ( ph  ->  A  e.  CC )
chordthmlem4.B  |-  ( ph  ->  B  e.  CC )
chordthmlem4.X  |-  ( ph  ->  X  e.  ( 0 [,] 1 ) )
chordthmlem4.M  |-  ( ph  ->  M  =  ( ( A  +  B )  /  2 ) )
chordthmlem4.P  |-  ( ph  ->  P  =  ( ( X  x.  A )  +  ( ( 1  -  X )  x.  B ) ) )
Assertion
Ref Expression
chordthmlem4  |-  ( ph  ->  ( ( abs `  ( P  -  A )
)  x.  ( abs `  ( P  -  B
) ) )  =  ( ( ( abs `  ( B  -  M
) ) ^ 2 )  -  ( ( abs `  ( P  -  M ) ) ^ 2 ) ) )

Proof of Theorem chordthmlem4
StepHypRef Expression
1 1re 8791 . . . . . . . . 9  |-  1  e.  RR
21a1i 12 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
3 unitssre 10733 . . . . . . . . 9  |-  ( 0 [,] 1 )  C_  RR
4 chordthmlem4.X . . . . . . . . 9  |-  ( ph  ->  X  e.  ( 0 [,] 1 ) )
53, 4sseldi 3139 . . . . . . . 8  |-  ( ph  ->  X  e.  RR )
62, 5resubcld 9165 . . . . . . 7  |-  ( ph  ->  ( 1  -  X
)  e.  RR )
76recnd 8815 . . . . . 6  |-  ( ph  ->  ( 1  -  X
)  e.  CC )
87abscld 11869 . . . . 5  |-  ( ph  ->  ( abs `  (
1  -  X ) )  e.  RR )
98recnd 8815 . . . 4  |-  ( ph  ->  ( abs `  (
1  -  X ) )  e.  CC )
10 chordthmlem4.B . . . . . . 7  |-  ( ph  ->  B  e.  CC )
11 chordthmlem4.A . . . . . . 7  |-  ( ph  ->  A  e.  CC )
1210, 11subcld 9111 . . . . . 6  |-  ( ph  ->  ( B  -  A
)  e.  CC )
1312abscld 11869 . . . . 5  |-  ( ph  ->  ( abs `  ( B  -  A )
)  e.  RR )
1413recnd 8815 . . . 4  |-  ( ph  ->  ( abs `  ( B  -  A )
)  e.  CC )
155recnd 8815 . . . . . 6  |-  ( ph  ->  X  e.  CC )
1615abscld 11869 . . . . 5  |-  ( ph  ->  ( abs `  X
)  e.  RR )
1716recnd 8815 . . . 4  |-  ( ph  ->  ( abs `  X
)  e.  CC )
189, 14, 17, 14mul4d 8978 . . 3  |-  ( ph  ->  ( ( ( abs `  ( 1  -  X
) )  x.  ( abs `  ( B  -  A ) ) )  x.  ( ( abs `  X )  x.  ( abs `  ( B  -  A ) ) ) )  =  ( ( ( abs `  (
1  -  X ) )  x.  ( abs `  X ) )  x.  ( ( abs `  ( B  -  A )
)  x.  ( abs `  ( B  -  A
) ) ) ) )
19 chordthmlem4.P . . . . . . 7  |-  ( ph  ->  P  =  ( ( X  x.  A )  +  ( ( 1  -  X )  x.  B ) ) )
2015, 11mulcld 8809 . . . . . . . . . 10  |-  ( ph  ->  ( X  x.  A
)  e.  CC )
217, 10mulcld 8809 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  -  X )  x.  B
)  e.  CC )
2220, 21addcld 8808 . . . . . . . . 9  |-  ( ph  ->  ( ( X  x.  A )  +  ( ( 1  -  X
)  x.  B ) )  e.  CC )
2319, 22eqeltrd 2330 . . . . . . . 8  |-  ( ph  ->  P  e.  CC )
2411, 23, 10, 15affineequiv2 20072 . . . . . . 7  |-  ( ph  ->  ( P  =  ( ( X  x.  A
)  +  ( ( 1  -  X )  x.  B ) )  <-> 
( P  -  A
)  =  ( ( 1  -  X )  x.  ( B  -  A ) ) ) )
2519, 24mpbid 203 . . . . . 6  |-  ( ph  ->  ( P  -  A
)  =  ( ( 1  -  X )  x.  ( B  -  A ) ) )
2625fveq2d 5448 . . . . 5  |-  ( ph  ->  ( abs `  ( P  -  A )
)  =  ( abs `  ( ( 1  -  X )  x.  ( B  -  A )
) ) )
277, 12absmuld 11887 . . . . 5  |-  ( ph  ->  ( abs `  (
( 1  -  X
)  x.  ( B  -  A ) ) )  =  ( ( abs `  ( 1  -  X ) )  x.  ( abs `  ( B  -  A )
) ) )
2826, 27eqtrd 2288 . . . 4  |-  ( ph  ->  ( abs `  ( P  -  A )
)  =  ( ( abs `  ( 1  -  X ) )  x.  ( abs `  ( B  -  A )
) ) )
2923, 10abssubd 11886 . . . . 5  |-  ( ph  ->  ( abs `  ( P  -  B )
)  =  ( abs `  ( B  -  P
) ) )
3011, 23, 10, 15affineequiv 20071 . . . . . . 7  |-  ( ph  ->  ( P  =  ( ( X  x.  A
)  +  ( ( 1  -  X )  x.  B ) )  <-> 
( B  -  P
)  =  ( X  x.  ( B  -  A ) ) ) )
3119, 30mpbid 203 . . . . . 6  |-  ( ph  ->  ( B  -  P
)  =  ( X  x.  ( B  -  A ) ) )
3231fveq2d 5448 . . . . 5  |-  ( ph  ->  ( abs `  ( B  -  P )
)  =  ( abs `  ( X  x.  ( B  -  A )
) ) )
3315, 12absmuld 11887 . . . . 5  |-  ( ph  ->  ( abs `  ( X  x.  ( B  -  A ) ) )  =  ( ( abs `  X )  x.  ( abs `  ( B  -  A ) ) ) )
3429, 32, 333eqtrd 2292 . . . 4  |-  ( ph  ->  ( abs `  ( P  -  B )
)  =  ( ( abs `  X )  x.  ( abs `  ( B  -  A )
) ) )
3528, 34oveq12d 5796 . . 3  |-  ( ph  ->  ( ( abs `  ( P  -  A )
)  x.  ( abs `  ( P  -  B
) ) )  =  ( ( ( abs `  ( 1  -  X
) )  x.  ( abs `  ( B  -  A ) ) )  x.  ( ( abs `  X )  x.  ( abs `  ( B  -  A ) ) ) ) )
3614sqvald 11194 . . . 4  |-  ( ph  ->  ( ( abs `  ( B  -  A )
) ^ 2 )  =  ( ( abs `  ( B  -  A
) )  x.  ( abs `  ( B  -  A ) ) ) )
3736oveq2d 5794 . . 3  |-  ( ph  ->  ( ( ( abs `  ( 1  -  X
) )  x.  ( abs `  X ) )  x.  ( ( abs `  ( B  -  A
) ) ^ 2 ) )  =  ( ( ( abs `  (
1  -  X ) )  x.  ( abs `  X ) )  x.  ( ( abs `  ( B  -  A )
)  x.  ( abs `  ( B  -  A
) ) ) ) )
3818, 35, 373eqtr4d 2298 . 2  |-  ( ph  ->  ( ( abs `  ( P  -  A )
)  x.  ( abs `  ( P  -  B
) ) )  =  ( ( ( abs `  ( 1  -  X
) )  x.  ( abs `  X ) )  x.  ( ( abs `  ( B  -  A
) ) ^ 2 ) ) )
392recnd 8815 . . . . . 6  |-  ( ph  ->  1  e.  CC )
4039halfcld 9909 . . . . 5  |-  ( ph  ->  ( 1  /  2
)  e.  CC )
4140sqcld 11195 . . . 4  |-  ( ph  ->  ( ( 1  / 
2 ) ^ 2 )  e.  CC )
422rehalfcld 9911 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  2
)  e.  RR )
4342, 5resubcld 9165 . . . . . . . 8  |-  ( ph  ->  ( ( 1  / 
2 )  -  X
)  e.  RR )
4443recnd 8815 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
2 )  -  X
)  e.  CC )
4544abscld 11869 . . . . . 6  |-  ( ph  ->  ( abs `  (
( 1  /  2
)  -  X ) )  e.  RR )
4645recnd 8815 . . . . 5  |-  ( ph  ->  ( abs `  (
( 1  /  2
)  -  X ) )  e.  CC )
4746sqcld 11195 . . . 4  |-  ( ph  ->  ( ( abs `  (
( 1  /  2
)  -  X ) ) ^ 2 )  e.  CC )
4814sqcld 11195 . . . 4  |-  ( ph  ->  ( ( abs `  ( B  -  A )
) ^ 2 )  e.  CC )
4941, 47, 48subdird 9190 . . 3  |-  ( ph  ->  ( ( ( ( 1  /  2 ) ^ 2 )  -  ( ( abs `  (
( 1  /  2
)  -  X ) ) ^ 2 ) )  x.  ( ( abs `  ( B  -  A ) ) ^ 2 ) )  =  ( ( ( ( 1  /  2
) ^ 2 )  x.  ( ( abs `  ( B  -  A
) ) ^ 2 ) )  -  (
( ( abs `  (
( 1  /  2
)  -  X ) ) ^ 2 )  x.  ( ( abs `  ( B  -  A
) ) ^ 2 ) ) ) )
50 subsq 11162 . . . . . . 7  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( ( 1  / 
2 )  -  X
)  e.  CC )  ->  ( ( ( 1  /  2 ) ^ 2 )  -  ( ( ( 1  /  2 )  -  X ) ^ 2 ) )  =  ( ( ( 1  / 
2 )  +  ( ( 1  /  2
)  -  X ) )  x.  ( ( 1  /  2 )  -  ( ( 1  /  2 )  -  X ) ) ) )
5140, 44, 50syl2anc 645 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  2 ) ^
2 )  -  (
( ( 1  / 
2 )  -  X
) ^ 2 ) )  =  ( ( ( 1  /  2
)  +  ( ( 1  /  2 )  -  X ) )  x.  ( ( 1  /  2 )  -  ( ( 1  / 
2 )  -  X
) ) ) )
5240, 40, 15addsubassd 9131 . . . . . . . 8  |-  ( ph  ->  ( ( ( 1  /  2 )  +  ( 1  /  2
) )  -  X
)  =  ( ( 1  /  2 )  +  ( ( 1  /  2 )  -  X ) ) )
53392halvesd 9910 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  / 
2 )  +  ( 1  /  2 ) )  =  1 )
5453oveq1d 5793 . . . . . . . 8  |-  ( ph  ->  ( ( ( 1  /  2 )  +  ( 1  /  2
) )  -  X
)  =  ( 1  -  X ) )
5552, 54eqtr3d 2290 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
2 )  +  ( ( 1  /  2
)  -  X ) )  =  ( 1  -  X ) )
5640, 15nncand 9116 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
2 )  -  (
( 1  /  2
)  -  X ) )  =  X )
5755, 56oveq12d 5796 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  2 )  +  ( ( 1  / 
2 )  -  X
) )  x.  (
( 1  /  2
)  -  ( ( 1  /  2 )  -  X ) ) )  =  ( ( 1  -  X )  x.  X ) )
5851, 57eqtr2d 2289 . . . . 5  |-  ( ph  ->  ( ( 1  -  X )  x.  X
)  =  ( ( ( 1  /  2
) ^ 2 )  -  ( ( ( 1  /  2 )  -  X ) ^
2 ) ) )
59 0re 8792 . . . . . . . . . 10  |-  0  e.  RR
6059, 1elicc2i 10668 . . . . . . . . 9  |-  ( X  e.  ( 0 [,] 1 )  <->  ( X  e.  RR  /\  0  <_  X  /\  X  <_  1
) )
614, 60sylib 190 . . . . . . . 8  |-  ( ph  ->  ( X  e.  RR  /\  0  <_  X  /\  X  <_  1 ) )
6261simp3d 974 . . . . . . 7  |-  ( ph  ->  X  <_  1 )
635, 2, 62abssubge0d 11865 . . . . . 6  |-  ( ph  ->  ( abs `  (
1  -  X ) )  =  ( 1  -  X ) )
6461simp2d 973 . . . . . . 7  |-  ( ph  ->  0  <_  X )
655, 64absidd 11856 . . . . . 6  |-  ( ph  ->  ( abs `  X
)  =  X )
6663, 65oveq12d 5796 . . . . 5  |-  ( ph  ->  ( ( abs `  (
1  -  X ) )  x.  ( abs `  X ) )  =  ( ( 1  -  X )  x.  X
) )
67 absresq 11738 . . . . . . 7  |-  ( ( ( 1  /  2
)  -  X )  e.  RR  ->  (
( abs `  (
( 1  /  2
)  -  X ) ) ^ 2 )  =  ( ( ( 1  /  2 )  -  X ) ^
2 ) )
6843, 67syl 17 . . . . . 6  |-  ( ph  ->  ( ( abs `  (
( 1  /  2
)  -  X ) ) ^ 2 )  =  ( ( ( 1  /  2 )  -  X ) ^
2 ) )
6968oveq2d 5794 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  2 ) ^
2 )  -  (
( abs `  (
( 1  /  2
)  -  X ) ) ^ 2 ) )  =  ( ( ( 1  /  2
) ^ 2 )  -  ( ( ( 1  /  2 )  -  X ) ^
2 ) ) )
7058, 66, 693eqtr4d 2298 . . . 4  |-  ( ph  ->  ( ( abs `  (
1  -  X ) )  x.  ( abs `  X ) )  =  ( ( ( 1  /  2 ) ^
2 )  -  (
( abs `  (
( 1  /  2
)  -  X ) ) ^ 2 ) ) )
7170oveq1d 5793 . . 3  |-  ( ph  ->  ( ( ( abs `  ( 1  -  X
) )  x.  ( abs `  X ) )  x.  ( ( abs `  ( B  -  A
) ) ^ 2 ) )  =  ( ( ( ( 1  /  2 ) ^
2 )  -  (
( abs `  (
( 1  /  2
)  -  X ) ) ^ 2 ) )  x.  ( ( abs `  ( B  -  A ) ) ^ 2 ) ) )
72 2cn 9770 . . . . . . . . . . . . . 14  |-  2  e.  CC
7372a1i 12 . . . . . . . . . . . . 13  |-  ( ph  ->  2  e.  CC )
74 2ne0 9783 . . . . . . . . . . . . . 14  |-  2  =/=  0
7574a1i 12 . . . . . . . . . . . . 13  |-  ( ph  ->  2  =/=  0 )
7610, 73, 75divcan4d 9496 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( B  x.  2 )  /  2
)  =  B )
7710times2d 9908 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B  x.  2 )  =  ( B  +  B ) )
7877oveq1d 5793 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( B  x.  2 )  /  2
)  =  ( ( B  +  B )  /  2 ) )
7976, 78eqtr3d 2290 . . . . . . . . . . 11  |-  ( ph  ->  B  =  ( ( B  +  B )  /  2 ) )
80 chordthmlem4.M . . . . . . . . . . 11  |-  ( ph  ->  M  =  ( ( A  +  B )  /  2 ) )
8179, 80oveq12d 5796 . . . . . . . . . 10  |-  ( ph  ->  ( B  -  M
)  =  ( ( ( B  +  B
)  /  2 )  -  ( ( A  +  B )  / 
2 ) ) )
8210, 10addcld 8808 . . . . . . . . . . 11  |-  ( ph  ->  ( B  +  B
)  e.  CC )
8311, 10addcld 8808 . . . . . . . . . . 11  |-  ( ph  ->  ( A  +  B
)  e.  CC )
8482, 83, 73, 75divsubdird 9529 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( B  +  B )  -  ( A  +  B
) )  /  2
)  =  ( ( ( B  +  B
)  /  2 )  -  ( ( A  +  B )  / 
2 ) ) )
8510, 11, 10pnpcan2d 9149 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B  +  B )  -  ( A  +  B )
)  =  ( B  -  A ) )
8685oveq1d 5793 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( B  +  B )  -  ( A  +  B
) )  /  2
)  =  ( ( B  -  A )  /  2 ) )
8781, 84, 863eqtr2d 2294 . . . . . . . . 9  |-  ( ph  ->  ( B  -  M
)  =  ( ( B  -  A )  /  2 ) )
8812, 73, 75divrec2d 9494 . . . . . . . . 9  |-  ( ph  ->  ( ( B  -  A )  /  2
)  =  ( ( 1  /  2 )  x.  ( B  -  A ) ) )
8987, 88eqtrd 2288 . . . . . . . 8  |-  ( ph  ->  ( B  -  M
)  =  ( ( 1  /  2 )  x.  ( B  -  A ) ) )
9089fveq2d 5448 . . . . . . 7  |-  ( ph  ->  ( abs `  ( B  -  M )
)  =  ( abs `  ( ( 1  / 
2 )  x.  ( B  -  A )
) ) )
9140, 12absmuld 11887 . . . . . . 7  |-  ( ph  ->  ( abs `  (
( 1  /  2
)  x.  ( B  -  A ) ) )  =  ( ( abs `  ( 1  /  2 ) )  x.  ( abs `  ( B  -  A )
) ) )
9259a1i 12 . . . . . . . . . 10  |-  ( ph  ->  0  e.  RR )
93 halfgt0 9885 . . . . . . . . . . 11  |-  0  <  ( 1  /  2
)
9493a1i 12 . . . . . . . . . 10  |-  ( ph  ->  0  <  ( 1  /  2 ) )
9592, 42, 94ltled 8921 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( 1  /  2 ) )
9642, 95absidd 11856 . . . . . . . 8  |-  ( ph  ->  ( abs `  (
1  /  2 ) )  =  ( 1  /  2 ) )
9796oveq1d 5793 . . . . . . 7  |-  ( ph  ->  ( ( abs `  (
1  /  2 ) )  x.  ( abs `  ( B  -  A
) ) )  =  ( ( 1  / 
2 )  x.  ( abs `  ( B  -  A ) ) ) )
9890, 91, 973eqtrd 2292 . . . . . 6  |-  ( ph  ->  ( abs `  ( B  -  M )
)  =  ( ( 1  /  2 )  x.  ( abs `  ( B  -  A )
) ) )
9998oveq1d 5793 . . . . 5  |-  ( ph  ->  ( ( abs `  ( B  -  M )
) ^ 2 )  =  ( ( ( 1  /  2 )  x.  ( abs `  ( B  -  A )
) ) ^ 2 ) )
10040, 14sqmuld 11209 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  2 )  x.  ( abs `  ( B  -  A )
) ) ^ 2 )  =  ( ( ( 1  /  2
) ^ 2 )  x.  ( ( abs `  ( B  -  A
) ) ^ 2 ) ) )
10199, 100eqtrd 2288 . . . 4  |-  ( ph  ->  ( ( abs `  ( B  -  M )
) ^ 2 )  =  ( ( ( 1  /  2 ) ^ 2 )  x.  ( ( abs `  ( B  -  A )
) ^ 2 ) ) )
10240, 15, 12subdird 9190 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 1  /  2 )  -  X )  x.  ( B  -  A )
)  =  ( ( ( 1  /  2
)  x.  ( B  -  A ) )  -  ( X  x.  ( B  -  A
) ) ) )
10389, 31oveq12d 5796 . . . . . . . . 9  |-  ( ph  ->  ( ( B  -  M )  -  ( B  -  P )
)  =  ( ( ( 1  /  2
)  x.  ( B  -  A ) )  -  ( X  x.  ( B  -  A
) ) ) )
10483halfcld 9909 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  +  B )  /  2
)  e.  CC )
10580, 104eqeltrd 2330 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
10610, 105, 23nnncan1d 9145 . . . . . . . . 9  |-  ( ph  ->  ( ( B  -  M )  -  ( B  -  P )
)  =  ( P  -  M ) )
107102, 103, 1063eqtr2rd 2295 . . . . . . . 8  |-  ( ph  ->  ( P  -  M
)  =  ( ( ( 1  /  2
)  -  X )  x.  ( B  -  A ) ) )
108107fveq2d 5448 . . . . . . 7  |-  ( ph  ->  ( abs `  ( P  -  M )
)  =  ( abs `  ( ( ( 1  /  2 )  -  X )  x.  ( B  -  A )
) ) )
10944, 12absmuld 11887 . . . . . . 7  |-  ( ph  ->  ( abs `  (
( ( 1  / 
2 )  -  X
)  x.  ( B  -  A ) ) )  =  ( ( abs `  ( ( 1  /  2 )  -  X ) )  x.  ( abs `  ( B  -  A )
) ) )
110108, 109eqtrd 2288 . . . . . 6  |-  ( ph  ->  ( abs `  ( P  -  M )
)  =  ( ( abs `  ( ( 1  /  2 )  -  X ) )  x.  ( abs `  ( B  -  A )
) ) )
111110oveq1d 5793 . . . . 5  |-  ( ph  ->  ( ( abs `  ( P  -  M )
) ^ 2 )  =  ( ( ( abs `  ( ( 1  /  2 )  -  X ) )  x.  ( abs `  ( B  -  A )
) ) ^ 2 ) )
11246, 14sqmuld 11209 . . . . 5  |-  ( ph  ->  ( ( ( abs `  ( ( 1  / 
2 )  -  X
) )  x.  ( abs `  ( B  -  A ) ) ) ^ 2 )  =  ( ( ( abs `  ( ( 1  / 
2 )  -  X
) ) ^ 2 )  x.  ( ( abs `  ( B  -  A ) ) ^ 2 ) ) )
113111, 112eqtrd 2288 . . . 4  |-  ( ph  ->  ( ( abs `  ( P  -  M )
) ^ 2 )  =  ( ( ( abs `  ( ( 1  /  2 )  -  X ) ) ^ 2 )  x.  ( ( abs `  ( B  -  A )
) ^ 2 ) ) )
114101, 113oveq12d 5796 . . 3  |-  ( ph  ->  ( ( ( abs `  ( B  -  M
) ) ^ 2 )  -  ( ( abs `  ( P  -  M ) ) ^ 2 ) )  =  ( ( ( ( 1  /  2
) ^ 2 )  x.  ( ( abs `  ( B  -  A
) ) ^ 2 ) )  -  (
( ( abs `  (
( 1  /  2
)  -  X ) ) ^ 2 )  x.  ( ( abs `  ( B  -  A
) ) ^ 2 ) ) ) )
11549, 71, 1143eqtr4rd 2299 . 2  |-  ( ph  ->  ( ( ( abs `  ( B  -  M
) ) ^ 2 )  -  ( ( abs `  ( P  -  M ) ) ^ 2 ) )  =  ( ( ( abs `  ( 1  -  X ) )  x.  ( abs `  X
) )  x.  (
( abs `  ( B  -  A )
) ^ 2 ) ) )
11638, 115eqtr4d 2291 1  |-  ( ph  ->  ( ( abs `  ( P  -  A )
)  x.  ( abs `  ( P  -  B
) ) )  =  ( ( ( abs `  ( B  -  M
) ) ^ 2 )  -  ( ( abs `  ( P  -  M ) ) ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3983   ` cfv 4659  (class class class)co 5778   CCcc 8689   RRcr 8690   0cc0 8691   1c1 8692    + caddc 8694    x. cmul 8696    < clt 8821    <_ cle 8822    - cmin 8991    / cdiv 9377   2c2 9749   [,]cicc 10611   ^cexp 11056   abscabs 11670
This theorem is referenced by:  chordthmlem5  20081
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768  ax-pre-sup 8769
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-2nd 6043  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-er 6614  df-en 6818  df-dom 6819  df-sdom 6820  df-sup 7148  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-div 9378  df-n 9701  df-2 9758  df-3 9759  df-n0 9919  df-z 9978  df-uz 10184  df-rp 10308  df-icc 10615  df-seq 10999  df-exp 11057  df-cj 11535  df-re 11536  df-im 11537  df-sqr 11671  df-abs 11672
  Copyright terms: Public domain W3C validator