MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpchtsum Unicode version

Theorem chpchtsum 20870
Description: The second Chebyshev function is the sum of the theta function at arguments quickly approaching zero. (This is usually stated as an infinite sum, but after a certain point, the terms are all zero, and it is easier for us to use an explicit finite sum.) (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
chpchtsum  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ k  e.  ( 1 ... ( |_ `  A ) ) (
theta `  ( A  ^ c  ( 1  / 
k ) ) ) )
Distinct variable group:    A, k

Proof of Theorem chpchtsum
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 fzfid 11239 . . . . 5  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  Fin )
2 inss2 3505 . . . . . . . . . 10  |-  ( ( 0 [,] A )  i^i  Prime )  C_  Prime
3 simpr 448 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( (
0 [,] A )  i^i  Prime ) )
42, 3sseldi 3289 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  Prime )
5 prmnn 13009 . . . . . . . . 9  |-  ( p  e.  Prime  ->  p  e.  NN )
64, 5syl 16 . . . . . . . 8  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  NN )
76nnrpd 10579 . . . . . . 7  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR+ )
87relogcld 20385 . . . . . 6  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR )
98recnd 9047 . . . . 5  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  CC )
10 fsumconst 12500 . . . . 5  |-  ( ( ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  Fin  /\  ( log `  p
)  e.  CC )  ->  sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( log `  p )  =  ( ( # `  (
1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  x.  ( log `  p ) ) )
111, 9, 10syl2anc 643 . . . 4  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( log `  p
)  =  ( (
# `  ( 1 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) ) )  x.  ( log `  p ) ) )
12 simpl 444 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  e.  RR )
13 1re 9023 . . . . . . . . . . . 12  |-  1  e.  RR
1413a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  e.  RR )
156nnred 9947 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR )
16 prmuz2 13024 . . . . . . . . . . . . 13  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
174, 16syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( ZZ>= ` 
2 ) )
18 eluz2b2 10480 . . . . . . . . . . . . 13  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
1918simprbi 451 . . . . . . . . . . . 12  |-  ( p  e.  ( ZZ>= `  2
)  ->  1  <  p )
2017, 19syl 16 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  <  p )
21 inss1 3504 . . . . . . . . . . . . . 14  |-  ( ( 0 [,] A )  i^i  Prime )  C_  (
0 [,] A )
2221, 3sseldi 3289 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( 0 [,] A ) )
23 0re 9024 . . . . . . . . . . . . . 14  |-  0  e.  RR
24 elicc2 10907 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( p  e.  ( 0 [,] A )  <-> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
2523, 12, 24sylancr 645 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  ( 0 [,] A )  <-> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
2622, 25mpbid 202 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) )
2726simp3d 971 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  <_  A )
2814, 15, 12, 20, 27ltletrd 9162 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  <  A )
2912, 28rplogcld 20391 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  A
)  e.  RR+ )
3015, 20rplogcld 20391 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR+ )
3129, 30rpdivcld 10597 . . . . . . . 8  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  A
)  /  ( log `  p ) )  e.  RR+ )
3231rpred 10580 . . . . . . 7  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  A
)  /  ( log `  p ) )  e.  RR )
3331rpge0d 10584 . . . . . . 7  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <_  ( ( log `  A )  / 
( log `  p
) ) )
34 flge0nn0 11152 . . . . . . 7  |-  ( ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  /\  0  <_ 
( ( log `  A
)  /  ( log `  p ) ) )  ->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  e.  NN0 )
3532, 33, 34syl2anc 643 . . . . . 6  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  NN0 )
36 hashfz1 11557 . . . . . 6  |-  ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  e. 
NN0  ->  ( # `  (
1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  =  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) )
3735, 36syl 16 . . . . 5  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( # `  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  =  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) )
3837oveq1d 6035 . . . 4  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( # `  (
1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  x.  ( log `  p ) )  =  ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  x.  ( log `  p ) ) )
3932flcld 11134 . . . . . 6  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  ZZ )
4039zcnd 10308 . . . . 5  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  CC )
4140, 9mulcomd 9042 . . . 4  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  x.  ( log `  p
) )  =  ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) )
4211, 38, 413eqtrrd 2424 . . 3  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  =  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( log `  p
) )
4342sumeq2dv 12424 . 2  |-  ( A  e.  RR  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  =  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( log `  p ) )
44 chpval2 20869 . 2  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )
45 simpl 444 . . . . . 6  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  A  e.  RR )
4623a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  e.  RR )
4713a1i 11 . . . . . . . 8  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  1  e.  RR )
48 0lt1 9482 . . . . . . . . 9  |-  0  <  1
4948a1i 11 . . . . . . . 8  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  <  1
)
50 elfzuz2 10994 . . . . . . . . 9  |-  ( k  e.  ( 1 ... ( |_ `  A
) )  ->  ( |_ `  A )  e.  ( ZZ>= `  1 )
)
51 eluzle 10430 . . . . . . . . . . 11  |-  ( ( |_ `  A )  e.  ( ZZ>= `  1
)  ->  1  <_  ( |_ `  A ) )
5251adantl 453 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  1
) )  ->  1  <_  ( |_ `  A
) )
53 simpl 444 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  1
) )  ->  A  e.  RR )
54 1z 10243 . . . . . . . . . . 11  |-  1  e.  ZZ
55 flge 11141 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  1  e.  ZZ )  ->  ( 1  <_  A  <->  1  <_  ( |_ `  A ) ) )
5653, 54, 55sylancl 644 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  1
) )  ->  (
1  <_  A  <->  1  <_  ( |_ `  A ) ) )
5752, 56mpbird 224 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  1
) )  ->  1  <_  A )
5850, 57sylan2 461 . . . . . . . 8  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  1  <_  A
)
5946, 47, 45, 49, 58ltletrd 9162 . . . . . . 7  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  <  A
)
6046, 45, 59ltled 9153 . . . . . 6  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  <_  A
)
61 elfznn 11012 . . . . . . . 8  |-  ( k  e.  ( 1 ... ( |_ `  A
) )  ->  k  e.  NN )
6261adantl 453 . . . . . . 7  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  k  e.  NN )
6362nnrecred 9977 . . . . . 6  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  / 
k )  e.  RR )
6445, 60, 63recxpcld 20481 . . . . 5  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  ^ c  ( 1  / 
k ) )  e.  RR )
65 chtval 20760 . . . . 5  |-  ( ( A  ^ c  ( 1  /  k ) )  e.  RR  ->  (
theta `  ( A  ^ c  ( 1  / 
k ) ) )  =  sum_ p  e.  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
( log `  p
) )
6664, 65syl 16 . . . 4  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( theta `  ( A  ^ c  ( 1  /  k ) ) )  =  sum_ p  e.  ( ( 0 [,] ( A  ^ c 
( 1  /  k
) ) )  i^i 
Prime ) ( log `  p
) )
6766sumeq2dv 12424 . . 3  |-  ( A  e.  RR  ->  sum_ k  e.  ( 1 ... ( |_ `  A ) ) ( theta `  ( A  ^ c  ( 1  /  k ) ) )  =  sum_ k  e.  ( 1 ... ( |_ `  A ) )
sum_ p  e.  (
( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
( log `  p
) )
68 ppifi 20755 . . . 4  |-  ( A  e.  RR  ->  (
( 0 [,] A
)  i^i  Prime )  e. 
Fin )
69 fzfid 11239 . . . 4  |-  ( A  e.  RR  ->  (
1 ... ( |_ `  A ) )  e. 
Fin )
702sseli 3287 . . . . . . . 8  |-  ( p  e.  ( ( 0 [,] A )  i^i 
Prime )  ->  p  e. 
Prime )
71 elfznn 11012 . . . . . . . 8  |-  ( k  e.  ( 1 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN )
7270, 71anim12i 550 . . . . . . 7  |-  ( ( p  e.  ( ( 0 [,] A )  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )  -> 
( p  e.  Prime  /\  k  e.  NN ) )
7372a1i 11 . . . . . 6  |-  ( A  e.  RR  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
p  e.  Prime  /\  k  e.  NN ) ) )
7423a1i 11 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  e.  RR )
752a1i 11 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  (
( 0 [,] A
)  i^i  Prime )  C_  Prime )
7675sselda 3291 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  Prime )
7776, 5syl 16 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  NN )
7877nnred 9947 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR )
7977nngt0d 9975 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  p )
8074, 78, 12, 79, 27ltletrd 9162 . . . . . . . 8  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  A )
8180ex 424 . . . . . . 7  |-  ( A  e.  RR  ->  (
p  e.  ( ( 0 [,] A )  i^i  Prime )  ->  0  <  A ) )
8281adantrd 455 . . . . . 6  |-  ( A  e.  RR  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  0  <  A ) )
8373, 82jcad 520 . . . . 5  |-  ( A  e.  RR  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( p  e.  Prime  /\  k  e.  NN )  /\  0  <  A
) ) )
84 inss2 3505 . . . . . . . . 9  |-  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )  C_ 
Prime
8584sseli 3287 . . . . . . . 8  |-  ( p  e.  ( ( 0 [,] ( A  ^ c  ( 1  / 
k ) ) )  i^i  Prime )  ->  p  e.  Prime )
8661, 85anim12ci 551 . . . . . . 7  |-  ( ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( (
0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
)  ->  ( p  e.  Prime  /\  k  e.  NN ) )
8786a1i 11 . . . . . 6  |-  ( A  e.  RR  ->  (
( k  e.  ( 1 ... ( |_
`  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
)  ->  ( p  e.  Prime  /\  k  e.  NN ) ) )
8859ex 424 . . . . . . 7  |-  ( A  e.  RR  ->  (
k  e.  ( 1 ... ( |_ `  A ) )  -> 
0  <  A )
)
8988adantrd 455 . . . . . 6  |-  ( A  e.  RR  ->  (
( k  e.  ( 1 ... ( |_
`  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
)  ->  0  <  A ) )
9087, 89jcad 520 . . . . 5  |-  ( A  e.  RR  ->  (
( k  e.  ( 1 ... ( |_
`  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
)  ->  ( (
p  e.  Prime  /\  k  e.  NN )  /\  0  <  A ) ) )
91 elin 3473 . . . . . . . . 9  |-  ( p  e.  ( ( 0 [,] A )  i^i 
Prime )  <->  ( p  e.  ( 0 [,] A
)  /\  p  e.  Prime ) )
92 simprll 739 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  Prime )
9392biantrud 494 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( 0 [,] A )  <->  ( p  e.  ( 0 [,] A
)  /\  p  e.  Prime ) ) )
9423a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  e.  RR )
95 simpl 444 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  A  e.  RR )
9692, 5syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  NN )
9796nnred 9947 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  RR )
9896nnnn0d 10206 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  NN0 )
9998nn0ge0d 10209 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  <_  p )
100 df-3an 938 . . . . . . . . . . . . 13  |-  ( ( p  e.  RR  /\  0  <_  p  /\  p  <_  A )  <->  ( (
p  e.  RR  /\  0  <_  p )  /\  p  <_  A ) )
10124, 100syl6bb 253 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( p  e.  ( 0 [,] A )  <-> 
( ( p  e.  RR  /\  0  <_  p )  /\  p  <_  A ) ) )
102101baibd 876 . . . . . . . . . . 11  |-  ( ( ( 0  e.  RR  /\  A  e.  RR )  /\  ( p  e.  RR  /\  0  <_  p ) )  -> 
( p  e.  ( 0 [,] A )  <-> 
p  <_  A )
)
10394, 95, 97, 99, 102syl22anc 1185 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( 0 [,] A )  <->  p  <_  A ) )
10493, 103bitr3d 247 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( 0 [,] A )  /\  p  e.  Prime )  <-> 
p  <_  A )
)
10591, 104syl5bb 249 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( ( 0 [,] A )  i^i  Prime )  <->  p  <_  A ) )
106 simprr 734 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  <  A )
10795, 106elrpd 10578 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  A  e.  RR+ )
108107relogcld 20385 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( log `  A )  e.  RR )
10992, 16syl 16 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  ( ZZ>= `  2 )
)
110109, 19syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  1  <  p )
11197, 110rplogcld 20391 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( log `  p )  e.  RR+ )
112108, 111rerpdivcld 10607 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( log `  A
)  /  ( log `  p ) )  e.  RR )
113 simprlr 740 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  NN )
114113nnzd 10306 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  ZZ )
115 flge 11141 . . . . . . . . . 10  |-  ( ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  /\  k  e.  ZZ )  ->  (
k  <_  ( ( log `  A )  / 
( log `  p
) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) ) )
116112, 114, 115syl2anc 643 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  <_  ( ( log `  A )  / 
( log `  p
) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) ) )
117113nnnn0d 10206 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  NN0 )
11896, 117nnexpcld 11471 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ k )  e.  NN )
119118nnrpd 10579 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ k )  e.  RR+ )
120119, 107logled 20389 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  <->  ( log `  ( p ^ k
) )  <_  ( log `  A ) ) )
12196nnrpd 10579 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  RR+ )
122 relogexp 20357 . . . . . . . . . . . 12  |-  ( ( p  e.  RR+  /\  k  e.  ZZ )  ->  ( log `  ( p ^
k ) )  =  ( k  x.  ( log `  p ) ) )
123121, 114, 122syl2anc 643 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( log `  ( p ^
k ) )  =  ( k  x.  ( log `  p ) ) )
124123breq1d 4163 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( log `  (
p ^ k ) )  <_  ( log `  A )  <->  ( k  x.  ( log `  p
) )  <_  ( log `  A ) ) )
125113nnred 9947 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  RR )
126125, 108, 111lemuldivd 10625 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( k  x.  ( log `  p ) )  <_  ( log `  A
)  <->  k  <_  (
( log `  A
)  /  ( log `  p ) ) ) )
127120, 124, 1263bitrd 271 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  <->  k  <_  ( ( log `  A
)  /  ( log `  p ) ) ) )
128 nnuz 10453 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
129113, 128syl6eleq 2477 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  ( ZZ>= `  1 )
)
130112flcld 11134 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) )  e.  ZZ )
131 elfz5 10983 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) )  e.  ZZ )  ->  ( k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) ) )
132129, 130, 131syl2anc 643 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )
133116, 127, 1323bitr4rd 278 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  <->  ( p ^
k )  <_  A
) )
134105, 133anbi12d 692 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  <->  ( p  <_  A  /\  ( p ^ k )  <_  A ) ) )
13595flcld 11134 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( |_ `  A )  e.  ZZ )
136 elfz5 10983 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  A )  e.  ZZ )  ->  (
k  e.  ( 1 ... ( |_ `  A ) )  <->  k  <_  ( |_ `  A ) ) )
137129, 135, 136syl2anc 643 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  e.  ( 1 ... ( |_ `  A ) )  <->  k  <_  ( |_ `  A ) ) )
138 flge 11141 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  k  e.  ZZ )  ->  ( k  <_  A  <->  k  <_  ( |_ `  A ) ) )
13995, 114, 138syl2anc 643 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  <_  A  <->  k  <_  ( |_ `  A ) ) )
140137, 139bitr4d 248 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  e.  ( 1 ... ( |_ `  A ) )  <->  k  <_  A ) )
141 elin 3473 . . . . . . . . . 10  |-  ( p  e.  ( ( 0 [,] ( A  ^ c  ( 1  / 
k ) ) )  i^i  Prime )  <->  ( p  e.  ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  /\  p  e. 
Prime ) )
14292biantrud 494 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( 0 [,] ( A  ^ c  ( 1  / 
k ) ) )  <-> 
( p  e.  ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  /\  p  e. 
Prime ) ) )
143107rpge0d 10584 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  <_  A )
144113nnrecred 9977 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
1  /  k )  e.  RR )
14595, 143, 144recxpcld 20481 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( A  ^ c  ( 1  /  k ) )  e.  RR )
146 elicc2 10907 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  ( A  ^ c 
( 1  /  k
) )  e.  RR )  ->  ( p  e.  ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  <->  ( p  e.  RR  /\  0  <_  p  /\  p  <_  ( A  ^ c  ( 1  /  k ) ) ) ) )
147 df-3an 938 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  RR  /\  0  <_  p  /\  p  <_  ( A  ^ c 
( 1  /  k
) ) )  <->  ( (
p  e.  RR  /\  0  <_  p )  /\  p  <_  ( A  ^ c  ( 1  / 
k ) ) ) )
148146, 147syl6bb 253 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  ( A  ^ c 
( 1  /  k
) )  e.  RR )  ->  ( p  e.  ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  <->  ( ( p  e.  RR  /\  0  <_  p )  /\  p  <_  ( A  ^ c 
( 1  /  k
) ) ) ) )
149148baibd 876 . . . . . . . . . . . . 13  |-  ( ( ( 0  e.  RR  /\  ( A  ^ c 
( 1  /  k
) )  e.  RR )  /\  ( p  e.  RR  /\  0  <_  p ) )  -> 
( p  e.  ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  <->  p  <_  ( A  ^ c  ( 1  /  k ) ) ) )
15094, 145, 97, 99, 149syl22anc 1185 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( 0 [,] ( A  ^ c  ( 1  / 
k ) ) )  <-> 
p  <_  ( A  ^ c  ( 1  /  k ) ) ) )
151142, 150bitr3d 247 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  /\  p  e. 
Prime )  <->  p  <_  ( A  ^ c  ( 1  /  k ) ) ) )
15295, 143, 144cxpge0d 20482 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  <_  ( A  ^ c 
( 1  /  k
) ) )
153113nnrpd 10579 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  RR+ )
15497, 99, 145, 152, 153cxple2d 20485 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  <_  ( A  ^ c  ( 1  /  k ) )  <-> 
( p  ^ c 
k )  <_  (
( A  ^ c 
( 1  /  k
) )  ^ c 
k ) ) )
15596nncnd 9948 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  CC )
156 cxpexp 20426 . . . . . . . . . . . . 13  |-  ( ( p  e.  CC  /\  k  e.  NN0 )  -> 
( p  ^ c 
k )  =  ( p ^ k ) )
157155, 117, 156syl2anc 643 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  ^ c  k )  =  ( p ^ k ) )
158113nncnd 9948 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  CC )
159113nnne0d 9976 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  =/=  0 )
160158, 159recid2d 9718 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( 1  /  k
)  x.  k )  =  1 )
161160oveq2d 6036 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( A  ^ c  ( ( 1  /  k )  x.  k ) )  =  ( A  ^ c  1 ) )
162107, 144, 158cxpmuld 20492 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( A  ^ c  ( ( 1  /  k )  x.  k ) )  =  ( ( A  ^ c  ( 1  /  k ) )  ^ c  k ) )
16395recnd 9047 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  A  e.  CC )
164163cxp1d 20464 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( A  ^ c  1 )  =  A )
165161, 162, 1643eqtr3d 2427 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( A  ^ c 
( 1  /  k
) )  ^ c 
k )  =  A )
166157, 165breq12d 4166 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  ^ c 
k )  <_  (
( A  ^ c 
( 1  /  k
) )  ^ c 
k )  <->  ( p ^ k )  <_  A ) )
167151, 154, 1663bitrd 271 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  /\  p  e. 
Prime )  <->  ( p ^
k )  <_  A
) )
168141, 167syl5bb 249 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )  <->  ( p ^ k )  <_  A ) )
169140, 168anbi12d 692 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( k  e.  ( 1 ... ( |_
`  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
)  <->  ( k  <_  A  /\  ( p ^
k )  <_  A
) ) )
170118nnred 9947 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ k )  e.  RR )
171 bernneq3 11434 . . . . . . . . . . . 12  |-  ( ( p  e.  ( ZZ>= ` 
2 )  /\  k  e.  NN0 )  ->  k  <  ( p ^ k
) )
172109, 117, 171syl2anc 643 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  <  ( p ^ k
) )
173125, 170, 172ltled 9153 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  <_  ( p ^ k
) )
174 letr 9100 . . . . . . . . . . 11  |-  ( ( k  e.  RR  /\  ( p ^ k
)  e.  RR  /\  A  e.  RR )  ->  ( ( k  <_ 
( p ^ k
)  /\  ( p ^ k )  <_  A )  ->  k  <_  A ) )
175125, 170, 95, 174syl3anc 1184 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( k  <_  (
p ^ k )  /\  ( p ^
k )  <_  A
)  ->  k  <_  A ) )
176173, 175mpand 657 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  ->  k  <_  A ) )
177176pm4.71rd 617 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  <->  ( k  <_  A  /\  ( p ^ k )  <_  A ) ) )
178155exp1d 11445 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ 1 )  =  p )
17996nnge1d 9974 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  1  <_  p )
18097, 179, 129leexp2ad 11482 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ 1 )  <_  ( p ^
k ) )
181178, 180eqbrtrrd 4175 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  <_  ( p ^ k
) )
182 letr 9100 . . . . . . . . . . 11  |-  ( ( p  e.  RR  /\  ( p ^ k
)  e.  RR  /\  A  e.  RR )  ->  ( ( p  <_ 
( p ^ k
)  /\  ( p ^ k )  <_  A )  ->  p  <_  A ) )
18397, 170, 95, 182syl3anc 1184 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  <_  (
p ^ k )  /\  ( p ^
k )  <_  A
)  ->  p  <_  A ) )
184181, 183mpand 657 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  ->  p  <_  A ) )
185184pm4.71rd 617 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  <->  ( p  <_  A  /\  ( p ^ k )  <_  A ) ) )
186169, 177, 1853bitr2rd 274 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  <_  A  /\  ( p ^ k
)  <_  A )  <->  ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( (
0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
) ) )
187134, 186bitrd 245 . . . . . 6  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  <->  ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
) ) )
188187ex 424 . . . . 5  |-  ( A  e.  RR  ->  (
( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
)  ->  ( (
p  e.  ( ( 0 [,] A )  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )  <->  ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
) ) ) )
18983, 90, 188pm5.21ndd 344 . . . 4  |-  ( A  e.  RR  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  <->  ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
) ) )
1909adantrr 698 . . . 4  |-  ( ( A  e.  RR  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( log `  p
)  e.  CC )
19168, 69, 1, 189, 190fsumcom2 12485 . . 3  |-  ( A  e.  RR  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( log `  p )  =  sum_ k  e.  ( 1 ... ( |_ `  A ) ) sum_ p  e.  ( ( 0 [,] ( A  ^ c  ( 1  / 
k ) ) )  i^i  Prime ) ( log `  p ) )
19267, 191eqtr4d 2422 . 2  |-  ( A  e.  RR  ->  sum_ k  e.  ( 1 ... ( |_ `  A ) ) ( theta `  ( A  ^ c  ( 1  /  k ) ) )  =  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( log `  p ) )
19343, 44, 1923eqtr4d 2429 1  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ k  e.  ( 1 ... ( |_ `  A ) ) (
theta `  ( A  ^ c  ( 1  / 
k ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    i^i cin 3262    C_ wss 3263   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   Fincfn 7045   CCcc 8921   RRcr 8922   0cc0 8923   1c1 8924    x. cmul 8928    < clt 9053    <_ cle 9054    / cdiv 9609   NNcn 9932   2c2 9981   NN0cn0 10153   ZZcz 10214   ZZ>=cuz 10420   RR+crp 10544   [,]cicc 10851   ...cfz 10975   |_cfl 11128   ^cexp 11309   #chash 11545   sum_csu 12406   Primecprime 13006   logclog 20319    ^ c ccxp 20320   thetaccht 20740  ψcchp 20742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-addf 9002  ax-mulf 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-map 6956  df-pm 6957  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-sup 7381  df-oi 7412  df-card 7759  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-ioo 10852  df-ioc 10853  df-ico 10854  df-icc 10855  df-fz 10976  df-fzo 11066  df-fl 11129  df-mod 11178  df-seq 11251  df-exp 11310  df-fac 11494  df-bc 11521  df-hash 11546  df-shft 11809  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-limsup 12192  df-clim 12209  df-rlim 12210  df-sum 12407  df-ef 12597  df-sin 12599  df-cos 12600  df-pi 12602  df-dvds 12780  df-gcd 12934  df-prm 13007  df-pc 13138  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-starv 13471  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-unif 13479  df-hom 13480  df-cco 13481  df-rest 13577  df-topn 13578  df-topgen 13594  df-pt 13595  df-prds 13598  df-xrs 13653  df-0g 13654  df-gsum 13655  df-qtop 13660  df-imas 13661  df-xps 13663  df-mre 13738  df-mrc 13739  df-acs 13741  df-mnd 14617  df-submnd 14666  df-mulg 14742  df-cntz 15043  df-cmn 15341  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-fbas 16623  df-fg 16624  df-cnfld 16627  df-top 16886  df-bases 16888  df-topon 16889  df-topsp 16890  df-cld 17006  df-ntr 17007  df-cls 17008  df-nei 17085  df-lp 17123  df-perf 17124  df-cn 17213  df-cnp 17214  df-haus 17301  df-tx 17515  df-hmeo 17708  df-fil 17799  df-fm 17891  df-flim 17892  df-flf 17893  df-xms 18259  df-ms 18260  df-tms 18261  df-cncf 18779  df-limc 19620  df-dv 19621  df-log 20321  df-cxp 20322  df-cht 20746  df-vma 20747  df-chp 20748
  Copyright terms: Public domain W3C validator