HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem1 Unicode version

Theorem chscllem1 22176
Description: Lemma for chscl 22180. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1  |-  ( ph  ->  A  e.  CH )
chscl.2  |-  ( ph  ->  B  e.  CH )
chscl.3  |-  ( ph  ->  B  C_  ( _|_ `  A ) )
chscl.4  |-  ( ph  ->  H : NN --> ( A  +H  B ) )
chscl.5  |-  ( ph  ->  H  ~~>v  u )
chscl.6  |-  F  =  ( n  e.  NN  |->  ( ( proj  h `  A ) `  ( H `  n )
) )
Assertion
Ref Expression
chscllem1  |-  ( ph  ->  F : NN --> A )
Distinct variable groups:    u, n, A    ph, n    B, n, u    n, H, u
Allowed substitution hints:    ph( u)    F( u, n)

Proof of Theorem chscllem1
StepHypRef Expression
1 eqid 2258 . . . 4  |-  ( (
proj  h `  A ) `
 ( H `  n ) )  =  ( ( proj  h `  A ) `  ( H `  n )
)
2 chscl.1 . . . . . 6  |-  ( ph  ->  A  e.  CH )
32adantr 453 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  A  e. 
CH )
4 chscl.4 . . . . . . 7  |-  ( ph  ->  H : NN --> ( A  +H  B ) )
5 ffvelrn 5597 . . . . . . 7  |-  ( ( H : NN --> ( A  +H  B )  /\  n  e.  NN )  ->  ( H `  n
)  e.  ( A  +H  B ) )
64, 5sylan 459 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( H `
 n )  e.  ( A  +H  B
) )
7 chscl.2 . . . . . . . . . 10  |-  ( ph  ->  B  e.  CH )
8 chsh 21764 . . . . . . . . . 10  |-  ( B  e.  CH  ->  B  e.  SH )
97, 8syl 17 . . . . . . . . 9  |-  ( ph  ->  B  e.  SH )
10 chsh 21764 . . . . . . . . . . 11  |-  ( A  e.  CH  ->  A  e.  SH )
112, 10syl 17 . . . . . . . . . 10  |-  ( ph  ->  A  e.  SH )
12 shocsh 21823 . . . . . . . . . 10  |-  ( A  e.  SH  ->  ( _|_ `  A )  e.  SH )
1311, 12syl 17 . . . . . . . . 9  |-  ( ph  ->  ( _|_ `  A
)  e.  SH )
14 chscl.3 . . . . . . . . 9  |-  ( ph  ->  B  C_  ( _|_ `  A ) )
15 shless 21898 . . . . . . . . 9  |-  ( ( ( B  e.  SH  /\  ( _|_ `  A
)  e.  SH  /\  A  e.  SH )  /\  B  C_  ( _|_ `  A ) )  -> 
( B  +H  A
)  C_  ( ( _|_ `  A )  +H  A ) )
169, 13, 11, 14, 15syl31anc 1190 . . . . . . . 8  |-  ( ph  ->  ( B  +H  A
)  C_  ( ( _|_ `  A )  +H  A ) )
17 shscom 21858 . . . . . . . . 9  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  =  ( B  +H  A ) )
1811, 9, 17syl2anc 645 . . . . . . . 8  |-  ( ph  ->  ( A  +H  B
)  =  ( B  +H  A ) )
19 shscom 21858 . . . . . . . . 9  |-  ( ( A  e.  SH  /\  ( _|_ `  A )  e.  SH )  -> 
( A  +H  ( _|_ `  A ) )  =  ( ( _|_ `  A )  +H  A
) )
2011, 13, 19syl2anc 645 . . . . . . . 8  |-  ( ph  ->  ( A  +H  ( _|_ `  A ) )  =  ( ( _|_ `  A )  +H  A
) )
2116, 18, 203sstr4d 3196 . . . . . . 7  |-  ( ph  ->  ( A  +H  B
)  C_  ( A  +H  ( _|_ `  A
) ) )
2221sselda 3155 . . . . . 6  |-  ( (
ph  /\  ( H `  n )  e.  ( A  +H  B ) )  ->  ( H `  n )  e.  ( A  +H  ( _|_ `  A ) ) )
236, 22syldan 458 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( H `
 n )  e.  ( A  +H  ( _|_ `  A ) ) )
24 pjpreeq 21937 . . . . 5  |-  ( ( A  e.  CH  /\  ( H `  n )  e.  ( A  +H  ( _|_ `  A ) ) )  ->  (
( ( proj  h `  A ) `  ( H `  n )
)  =  ( (
proj  h `  A ) `
 ( H `  n ) )  <->  ( (
( proj  h `  A
) `  ( H `  n ) )  e.  A  /\  E. x  e.  ( _|_ `  A
) ( H `  n )  =  ( ( ( proj  h `  A ) `  ( H `  n )
)  +h  x ) ) ) )
253, 23, 24syl2anc 645 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( proj  h `  A
) `  ( H `  n ) )  =  ( ( proj  h `  A ) `  ( H `  n )
)  <->  ( ( (
proj  h `  A ) `
 ( H `  n ) )  e.  A  /\  E. x  e.  ( _|_ `  A
) ( H `  n )  =  ( ( ( proj  h `  A ) `  ( H `  n )
)  +h  x ) ) ) )
261, 25mpbii 204 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( proj  h `  A
) `  ( H `  n ) )  e.  A  /\  E. x  e.  ( _|_ `  A
) ( H `  n )  =  ( ( ( proj  h `  A ) `  ( H `  n )
)  +h  x ) ) )
2726simpld 447 . 2  |-  ( (
ph  /\  n  e.  NN )  ->  ( (
proj  h `  A ) `
 ( H `  n ) )  e.  A )
28 chscl.6 . 2  |-  F  =  ( n  e.  NN  |->  ( ( proj  h `  A ) `  ( H `  n )
) )
2927, 28fmptd 5618 1  |-  ( ph  ->  F : NN --> A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   E.wrex 2519    C_ wss 3127   class class class wbr 3997    e. cmpt 4051   -->wf 4669   ` cfv 4673  (class class class)co 5792   NNcn 9714    +h cva 21460    ~~>v chli 21467   SHcsh 21468   CHcch 21469   _|_cort 21470    +H cph 21471   proj 
hcpjh 21477
This theorem is referenced by:  chscllem2  22177  chscllem3  22178  chscllem4  22179
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-hilex 21539  ax-hfvadd 21540  ax-hvcom 21541  ax-hvass 21542  ax-hv0cl 21543  ax-hvaddid 21544  ax-hfvmul 21545  ax-hvmulid 21546  ax-hvmulass 21547  ax-hvdistr1 21548  ax-hvdistr2 21549  ax-hvmul0 21550  ax-hfi 21618  ax-his2 21622  ax-his3 21623  ax-his4 21624
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-po 4286  df-so 4287  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-iota 6225  df-riota 6272  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-grpo 20818  df-ablo 20909  df-hvsub 21511  df-sh 21746  df-ch 21761  df-oc 21791  df-ch0 21792  df-shs 21847  df-pjh 21934
  Copyright terms: Public domain W3C validator