MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtleppi Unicode version

Theorem chtleppi 20443
Description: Upper bound on the  theta function. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chtleppi  |-  ( A  e.  RR+  ->  ( theta `  A )  <_  (
(π `  A )  x.  ( log `  A
) ) )
Dummy variable  p is distinct from all other variables.

Proof of Theorem chtleppi
StepHypRef Expression
1 rpre 10355 . . . 4  |-  ( A  e.  RR+  ->  A  e.  RR )
2 ppifi 20337 . . . 4  |-  ( A  e.  RR  ->  (
( 0 [,] A
)  i^i  Prime )  e. 
Fin )
31, 2syl 17 . . 3  |-  ( A  e.  RR+  ->  ( ( 0 [,] A )  i^i  Prime )  e.  Fin )
4 inss2 3391 . . . . . . 7  |-  ( ( 0 [,] A )  i^i  Prime )  C_  Prime
5 simpr 449 . . . . . . 7  |-  ( ( A  e.  RR+  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  ->  p  e.  ( ( 0 [,] A )  i^i  Prime ) )
64, 5sseldi 3179 . . . . . 6  |-  ( ( A  e.  RR+  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  ->  p  e.  Prime )
7 prmnn 12755 . . . . . 6  |-  ( p  e.  Prime  ->  p  e.  NN )
86, 7syl 17 . . . . 5  |-  ( ( A  e.  RR+  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  ->  p  e.  NN )
98nnrpd 10384 . . . 4  |-  ( ( A  e.  RR+  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  ->  p  e.  RR+ )
10 relogcl 19926 . . . 4  |-  ( p  e.  RR+  ->  ( log `  p )  e.  RR )
119, 10syl 17 . . 3  |-  ( ( A  e.  RR+  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  ->  ( log `  p )  e.  RR )
12 relogcl 19926 . . . 4  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
1312adantr 453 . . 3  |-  ( ( A  e.  RR+  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  ->  ( log `  A )  e.  RR )
14 inss1 3390 . . . . . . . 8  |-  ( ( 0 [,] A )  i^i  Prime )  C_  (
0 [,] A )
1514, 5sseldi 3179 . . . . . . 7  |-  ( ( A  e.  RR+  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  ->  p  e.  ( 0 [,] A
) )
16 0re 8833 . . . . . . . . 9  |-  0  e.  RR
17 elicc2 10709 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( p  e.  ( 0 [,] A )  <-> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
1816, 1, 17sylancr 646 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( p  e.  ( 0 [,] A )  <->  ( p  e.  RR  /\  0  <_  p  /\  p  <_  A
) ) )
1918biimpa 472 . . . . . . 7  |-  ( ( A  e.  RR+  /\  p  e.  ( 0 [,] A
) )  ->  (
p  e.  RR  /\  0  <_  p  /\  p  <_  A ) )
2015, 19syldan 458 . . . . . 6  |-  ( ( A  e.  RR+  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  ->  ( p  e.  RR  /\  0  <_  p  /\  p  <_  A
) )
2120simp3d 971 . . . . 5  |-  ( ( A  e.  RR+  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  ->  p  <_  A )
229reeflogd 19969 . . . . 5  |-  ( ( A  e.  RR+  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  ->  ( exp `  ( log `  p
) )  =  p )
23 reeflog 19928 . . . . . 6  |-  ( A  e.  RR+  ->  ( exp `  ( log `  A
) )  =  A )
2423adantr 453 . . . . 5  |-  ( ( A  e.  RR+  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  ->  ( exp `  ( log `  A
) )  =  A )
2521, 22, 243brtr4d 4054 . . . 4  |-  ( ( A  e.  RR+  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  ->  ( exp `  ( log `  p
) )  <_  ( exp `  ( log `  A
) ) )
26 efle 12392 . . . . 5  |-  ( ( ( log `  p
)  e.  RR  /\  ( log `  A )  e.  RR )  -> 
( ( log `  p
)  <_  ( log `  A )  <->  ( exp `  ( log `  p
) )  <_  ( exp `  ( log `  A
) ) ) )
2711, 13, 26syl2anc 644 . . . 4  |-  ( ( A  e.  RR+  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  ->  ( ( log `  p )  <_ 
( log `  A
)  <->  ( exp `  ( log `  p ) )  <_  ( exp `  ( log `  A ) ) ) )
2825, 27mpbird 225 . . 3  |-  ( ( A  e.  RR+  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  ->  ( log `  p )  <_  ( log `  A ) )
293, 11, 13, 28fsumle 12251 . 2  |-  ( A  e.  RR+  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( log `  p
)  <_  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( log `  A
) )
30 chtval 20342 . . 3  |-  ( A  e.  RR  ->  ( theta `  A )  = 
sum_ p  e.  (
( 0 [,] A
)  i^i  Prime ) ( log `  p ) )
311, 30syl 17 . 2  |-  ( A  e.  RR+  ->  ( theta `  A )  =  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) ( log `  p
) )
32 ppival 20359 . . . . 5  |-  ( A  e.  RR  ->  (π `  A )  =  (
# `  ( (
0 [,] A )  i^i  Prime ) ) )
331, 32syl 17 . . . 4  |-  ( A  e.  RR+  ->  (π `  A
)  =  ( # `  ( ( 0 [,] A )  i^i  Prime ) ) )
3433oveq1d 5834 . . 3  |-  ( A  e.  RR+  ->  ( (π `  A )  x.  ( log `  A ) )  =  ( ( # `  ( ( 0 [,] A )  i^i  Prime ) )  x.  ( log `  A ) ) )
3512recnd 8856 . . . 4  |-  ( A  e.  RR+  ->  ( log `  A )  e.  CC )
36 fsumconst 12246 . . . 4  |-  ( ( ( ( 0 [,] A )  i^i  Prime )  e.  Fin  /\  ( log `  A )  e.  CC )  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( log `  A
)  =  ( (
# `  ( (
0 [,] A )  i^i  Prime ) )  x.  ( log `  A
) ) )
373, 35, 36syl2anc 644 . . 3  |-  ( A  e.  RR+  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( log `  A
)  =  ( (
# `  ( (
0 [,] A )  i^i  Prime ) )  x.  ( log `  A
) ) )
3834, 37eqtr4d 2319 . 2  |-  ( A  e.  RR+  ->  ( (π `  A )  x.  ( log `  A ) )  =  sum_ p  e.  ( ( 0 [,] A
)  i^i  Prime ) ( log `  A ) )
3929, 31, 383brtr4d 4054 1  |-  ( A  e.  RR+  ->  ( theta `  A )  <_  (
(π `  A )  x.  ( log `  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685    i^i cin 3152   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   Fincfn 6858   CCcc 8730   RRcr 8731   0cc0 8732    x. cmul 8737    <_ cle 8863   NNcn 9741   RR+crp 10349   [,]cicc 10653   #chash 11331   sum_csu 12152   expce 12337   Primecprime 12752   logclog 19906   thetaccht 20322  πcppi 20325
This theorem is referenced by:  chtppilim  20618
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6655  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10654  df-ioc 10655  df-ico 10656  df-icc 10657  df-fz 10777  df-fzo 10865  df-fl 10919  df-mod 10968  df-seq 11041  df-exp 11099  df-fac 11283  df-bc 11310  df-hash 11332  df-shft 11556  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-limsup 11939  df-clim 11956  df-rlim 11957  df-sum 12153  df-ef 12343  df-sin 12345  df-cos 12346  df-pi 12348  df-dvds 12526  df-prm 12753  df-struct 13144  df-ndx 13145  df-slot 13146  df-base 13147  df-sets 13148  df-ress 13149  df-plusg 13215  df-mulr 13216  df-starv 13217  df-sca 13218  df-vsca 13219  df-tset 13221  df-ple 13222  df-ds 13224  df-hom 13226  df-cco 13227  df-rest 13321  df-topn 13322  df-topgen 13338  df-pt 13339  df-prds 13342  df-xrs 13397  df-0g 13398  df-gsum 13399  df-qtop 13404  df-imas 13405  df-xps 13407  df-mre 13482  df-mrc 13483  df-acs 13485  df-mnd 14361  df-submnd 14410  df-mulg 14486  df-cntz 14787  df-cmn 15085  df-xmet 16367  df-met 16368  df-bl 16369  df-mopn 16370  df-cnfld 16372  df-top 16630  df-bases 16632  df-topon 16633  df-topsp 16634  df-cld 16750  df-ntr 16751  df-cls 16752  df-nei 16829  df-lp 16862  df-perf 16863  df-cn 16951  df-cnp 16952  df-haus 17037  df-tx 17251  df-hmeo 17440  df-fbas 17514  df-fg 17515  df-fil 17535  df-fm 17627  df-flim 17628  df-flf 17629  df-xms 17879  df-ms 17880  df-tms 17881  df-cncf 18376  df-limc 19210  df-dv 19211  df-log 19908  df-cht 20328  df-ppi 20331
  Copyright terms: Public domain W3C validator