MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtublem Unicode version

Theorem chtublem 20983
Description: Lemma for chtub 20984. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
chtublem  |-  ( N  e.  NN  ->  ( theta `  ( ( 2  x.  N )  - 
1 ) )  <_ 
( ( theta `  N
)  +  ( ( log `  4 )  x.  ( N  - 
1 ) ) ) )

Proof of Theorem chtublem
Dummy variables  k  n  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 10122 . . . . . 6  |-  2  e.  NN
2 nnmulcl 10012 . . . . . 6  |-  ( ( 2  e.  NN  /\  N  e.  NN )  ->  ( 2  x.  N
)  e.  NN )
31, 2mpan 652 . . . . 5  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  NN )
43nnred 10004 . . . 4  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR )
5 peano2rem 9356 . . . 4  |-  ( ( 2  x.  N )  e.  RR  ->  (
( 2  x.  N
)  -  1 )  e.  RR )
64, 5syl 16 . . 3  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  -  1 )  e.  RR )
7 chtcl 20880 . . 3  |-  ( ( ( 2  x.  N
)  -  1 )  e.  RR  ->  ( theta `  ( ( 2  x.  N )  - 
1 ) )  e.  RR )
86, 7syl 16 . 2  |-  ( N  e.  NN  ->  ( theta `  ( ( 2  x.  N )  - 
1 ) )  e.  RR )
9 nnre 9996 . . . 4  |-  ( N  e.  NN  ->  N  e.  RR )
10 chtcl 20880 . . . 4  |-  ( N  e.  RR  ->  ( theta `  N )  e.  RR )
119, 10syl 16 . . 3  |-  ( N  e.  NN  ->  ( theta `  N )  e.  RR )
12 nnnn0 10217 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
13 2m1e1 10084 . . . . . . . . . . 11  |-  ( 2  -  1 )  =  1
1413oveq2i 6083 . . . . . . . . . 10  |-  ( ( 2  x.  N )  -  ( 2  -  1 ) )  =  ( ( 2  x.  N )  -  1 )
153nncnd 10005 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  CC )
16 2cn 10059 . . . . . . . . . . . . 13  |-  2  e.  CC
17 ax-1cn 9037 . . . . . . . . . . . . 13  |-  1  e.  CC
18 subsub 9320 . . . . . . . . . . . . 13  |-  ( ( ( 2  x.  N
)  e.  CC  /\  2  e.  CC  /\  1  e.  CC )  ->  (
( 2  x.  N
)  -  ( 2  -  1 ) )  =  ( ( ( 2  x.  N )  -  2 )  +  1 ) )
1916, 17, 18mp3an23 1271 . . . . . . . . . . . 12  |-  ( ( 2  x.  N )  e.  CC  ->  (
( 2  x.  N
)  -  ( 2  -  1 ) )  =  ( ( ( 2  x.  N )  -  2 )  +  1 ) )
2015, 19syl 16 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  -  ( 2  -  1 ) )  =  ( ( ( 2  x.  N )  -  2 )  +  1 ) )
21 nncn 9997 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  CC )
22 subdi 9456 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  (
2  x.  ( N  -  1 ) )  =  ( ( 2  x.  N )  -  ( 2  x.  1 ) ) )
2316, 17, 22mp3an13 1270 . . . . . . . . . . . . . 14  |-  ( N  e.  CC  ->  (
2  x.  ( N  -  1 ) )  =  ( ( 2  x.  N )  -  ( 2  x.  1 ) ) )
2421, 23syl 16 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
2  x.  ( N  -  1 ) )  =  ( ( 2  x.  N )  -  ( 2  x.  1 ) ) )
2516mulid1i 9081 . . . . . . . . . . . . . 14  |-  ( 2  x.  1 )  =  2
2625oveq2i 6083 . . . . . . . . . . . . 13  |-  ( ( 2  x.  N )  -  ( 2  x.  1 ) )  =  ( ( 2  x.  N )  -  2 )
2724, 26syl6eq 2483 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
2  x.  ( N  -  1 ) )  =  ( ( 2  x.  N )  - 
2 ) )
2827oveq1d 6087 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 2  x.  ( N  -  1 ) )  +  1 )  =  ( ( ( 2  x.  N )  -  2 )  +  1 ) )
2920, 28eqtr4d 2470 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  -  ( 2  -  1 ) )  =  ( ( 2  x.  ( N  - 
1 ) )  +  1 ) )
3014, 29syl5eqr 2481 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  -  1 )  =  ( ( 2  x.  ( N  - 
1 ) )  +  1 ) )
31 2nn0 10227 . . . . . . . . . . 11  |-  2  e.  NN0
32 nnm1nn0 10250 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
33 nn0mulcl 10245 . . . . . . . . . . 11  |-  ( ( 2  e.  NN0  /\  ( N  -  1
)  e.  NN0 )  ->  ( 2  x.  ( N  -  1 ) )  e.  NN0 )
3431, 32, 33sylancr 645 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
2  x.  ( N  -  1 ) )  e.  NN0 )
35 nn0p1nn 10248 . . . . . . . . . 10  |-  ( ( 2  x.  ( N  -  1 ) )  e.  NN0  ->  ( ( 2  x.  ( N  -  1 ) )  +  1 )  e.  NN )
3634, 35syl 16 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( 2  x.  ( N  -  1 ) )  +  1 )  e.  NN )
3730, 36eqeltrd 2509 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  -  1 )  e.  NN )
38 nnnn0 10217 . . . . . . . 8  |-  ( ( ( 2  x.  N
)  -  1 )  e.  NN  ->  (
( 2  x.  N
)  -  1 )  e.  NN0 )
3937, 38syl 16 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  -  1 )  e.  NN0 )
40 1re 9079 . . . . . . . . . . 11  |-  1  e.  RR
4140a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN  ->  1  e.  RR )
42 nnge1 10015 . . . . . . . . . 10  |-  ( N  e.  NN  ->  1  <_  N )
4341, 9, 9, 42leadd2dd 9630 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  <_  ( N  +  N ) )
44212timesd 10199 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  N )  =  ( N  +  N ) )
4543, 44breqtrrd 4230 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  +  1 )  <_  ( 2  x.  N ) )
46 leaddsub 9493 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  1  e.  RR  /\  (
2  x.  N )  e.  RR )  -> 
( ( N  + 
1 )  <_  (
2  x.  N )  <-> 
N  <_  ( (
2  x.  N )  -  1 ) ) )
479, 41, 4, 46syl3anc 1184 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  <_  ( 2  x.  N )  <->  N  <_  ( ( 2  x.  N
)  -  1 ) ) )
4845, 47mpbid 202 . . . . . . 7  |-  ( N  e.  NN  ->  N  <_  ( ( 2  x.  N )  -  1 ) )
49 elfz2nn0 11071 . . . . . . 7  |-  ( N  e.  ( 0 ... ( ( 2  x.  N )  -  1 ) )  <->  ( N  e.  NN0  /\  ( ( 2  x.  N )  -  1 )  e. 
NN0  /\  N  <_  ( ( 2  x.  N
)  -  1 ) ) )
5012, 39, 48, 49syl3anbrc 1138 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ( 0 ... (
( 2  x.  N
)  -  1 ) ) )
51 bccl2 11602 . . . . . 6  |-  ( N  e.  ( 0 ... ( ( 2  x.  N )  -  1 ) )  ->  (
( ( 2  x.  N )  -  1 )  _C  N )  e.  NN )
5250, 51syl 16 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  -  1 )  _C  N )  e.  NN )
5352nnrpd 10636 . . . 4  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  -  1 )  _C  N )  e.  RR+ )
5453relogcld 20506 . . 3  |-  ( N  e.  NN  ->  ( log `  ( ( ( 2  x.  N )  -  1 )  _C  N ) )  e.  RR )
5511, 54readdcld 9104 . 2  |-  ( N  e.  NN  ->  (
( theta `  N )  +  ( log `  (
( ( 2  x.  N )  -  1 )  _C  N ) ) )  e.  RR )
56 4re 10062 . . . . . 6  |-  4  e.  RR
57 4pos 10075 . . . . . 6  |-  0  <  4
5856, 57elrpii 10604 . . . . 5  |-  4  e.  RR+
59 relogcl 20461 . . . . 5  |-  ( 4  e.  RR+  ->  ( log `  4 )  e.  RR )
6058, 59ax-mp 8 . . . 4  |-  ( log `  4 )  e.  RR
6132nn0red 10264 . . . 4  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  RR )
62 remulcl 9064 . . . 4  |-  ( ( ( log `  4
)  e.  RR  /\  ( N  -  1
)  e.  RR )  ->  ( ( log `  4 )  x.  ( N  -  1 ) )  e.  RR )
6360, 61, 62sylancr 645 . . 3  |-  ( N  e.  NN  ->  (
( log `  4
)  x.  ( N  -  1 ) )  e.  RR )
6411, 63readdcld 9104 . 2  |-  ( N  e.  NN  ->  (
( theta `  N )  +  ( ( log `  4 )  x.  ( N  -  1 ) ) )  e.  RR )
65 iftrue 3737 . . . . . . . . . . . 12  |-  ( p  <_  ( ( 2  x.  N )  - 
1 )  ->  if ( p  <_  ( ( 2  x.  N )  -  1 ) ,  1 ,  0 )  =  1 )
6665adantl 453 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  ( ( 2  x.  N )  -  1 ) )  ->  if ( p  <_  ( ( 2  x.  N )  - 
1 ) ,  1 ,  0 )  =  1 )
67 simpr 448 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  p  e.  Prime )  ->  p  e.  Prime )
6852adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( ( ( 2  x.  N )  - 
1 )  _C  N
)  e.  NN )
6967, 68pccld 13212 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  (
( ( 2  x.  N )  -  1 )  _C  N ) )  e.  NN0 )
70 nn0addge1 10255 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  ( p  pCnt  ( ( ( 2  x.  N
)  -  1 )  _C  N ) )  e.  NN0 )  -> 
1  <_  ( 1  +  ( p  pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) )
7140, 69, 70sylancr 645 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
1  <_  ( 1  +  ( p  pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) )
72 iftrue 3737 . . . . . . . . . . . . . . . 16  |-  ( p  <_  N  ->  if ( p  <_  N , 
1 ,  0 )  =  1 )
7372oveq1d 6087 . . . . . . . . . . . . . . 15  |-  ( p  <_  N  ->  ( if ( p  <_  N ,  1 ,  0 )  +  ( p 
pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) )  =  ( 1  +  ( p  pCnt  (
( ( 2  x.  N )  -  1 )  _C  N ) ) ) )
7473breq2d 4216 . . . . . . . . . . . . . 14  |-  ( p  <_  N  ->  (
1  <_  ( if ( p  <_  N , 
1 ,  0 )  +  ( p  pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) )  <->  1  <_  ( 1  +  ( p 
pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) ) )
7571, 74syl5ibrcom 214 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  <_  N  ->  1  <_  ( if ( p  <_  N , 
1 ,  0 )  +  ( p  pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) ) )
7675adantr 452 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  ( ( 2  x.  N )  -  1 ) )  ->  ( p  <_  N  ->  1  <_  ( if ( p  <_  N ,  1 ,  0 )  +  ( p 
pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) ) )
77 prmnn 13070 . . . . . . . . . . . . . . . . . 18  |-  ( p  e.  Prime  ->  p  e.  NN )
7877ad2antlr 708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  ->  p  e.  NN )
79 simprl 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  ->  p  <_  ( ( 2  x.  N )  - 
1 ) )
80 prmz 13071 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  e.  Prime  ->  p  e.  ZZ )
8137nnzd 10363 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  -  1 )  e.  ZZ )
82 eluz 10488 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( p  e.  ZZ  /\  ( ( 2  x.  N )  -  1 )  e.  ZZ )  ->  ( ( ( 2  x.  N )  -  1 )  e.  ( ZZ>= `  p )  <->  p  <_  ( ( 2  x.  N )  - 
1 ) ) )
8380, 81, 82syl2anr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( ( ( 2  x.  N )  - 
1 )  e.  (
ZZ>= `  p )  <->  p  <_  ( ( 2  x.  N
)  -  1 ) ) )
8483adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
( ( ( 2  x.  N )  - 
1 )  e.  (
ZZ>= `  p )  <->  p  <_  ( ( 2  x.  N
)  -  1 ) ) )
8579, 84mpbird 224 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
( ( 2  x.  N )  -  1 )  e.  ( ZZ>= `  p ) )
86 dvdsfac 12892 . . . . . . . . . . . . . . . . 17  |-  ( ( p  e.  NN  /\  ( ( 2  x.  N )  -  1 )  e.  ( ZZ>= `  p ) )  ->  p  ||  ( ! `  ( ( 2  x.  N )  -  1 ) ) )
8778, 85, 86syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  ->  p  ||  ( ! `  ( ( 2  x.  N )  -  1 ) ) )
88 id 20 . . . . . . . . . . . . . . . . . 18  |-  ( p  e.  Prime  ->  p  e. 
Prime )
89 faccl 11564 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 2  x.  N
)  -  1 )  e.  NN0  ->  ( ! `
 ( ( 2  x.  N )  - 
1 ) )  e.  NN )
9039, 89syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  ( ! `  ( (
2  x.  N )  -  1 ) )  e.  NN )
91 pcelnn 13231 . . . . . . . . . . . . . . . . . 18  |-  ( ( p  e.  Prime  /\  ( ! `  ( (
2  x.  N )  -  1 ) )  e.  NN )  -> 
( ( p  pCnt  ( ! `  ( ( 2  x.  N )  -  1 ) ) )  e.  NN  <->  p  ||  ( ! `  ( (
2  x.  N )  -  1 ) ) ) )
9288, 90, 91syl2anr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( ( p  pCnt  ( ! `  ( ( 2  x.  N )  -  1 ) ) )  e.  NN  <->  p  ||  ( ! `  ( (
2  x.  N )  -  1 ) ) ) )
9392adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
( ( p  pCnt  ( ! `  ( ( 2  x.  N )  -  1 ) ) )  e.  NN  <->  p  ||  ( ! `  ( (
2  x.  N )  -  1 ) ) ) )
9487, 93mpbird 224 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
( p  pCnt  ( ! `  ( (
2  x.  N )  -  1 ) ) )  e.  NN )
9594nnge1d 10031 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
1  <_  ( p  pCnt  ( ! `  (
( 2  x.  N
)  -  1 ) ) ) )
96 iffalse 3738 . . . . . . . . . . . . . . . . 17  |-  ( -.  p  <_  N  ->  if ( p  <_  N ,  1 ,  0 )  =  0 )
9796oveq1d 6087 . . . . . . . . . . . . . . . 16  |-  ( -.  p  <_  N  ->  ( if ( p  <_  N ,  1 , 
0 )  +  ( p  pCnt  ( (
( 2  x.  N
)  -  1 )  _C  N ) ) )  =  ( 0  +  ( p  pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) )
9897ad2antll 710 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
( if ( p  <_  N ,  1 ,  0 )  +  ( p  pCnt  (
( ( 2  x.  N )  -  1 )  _C  N ) ) )  =  ( 0  +  ( p 
pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) )
9969nn0cnd 10265 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  (
( ( 2  x.  N )  -  1 )  _C  N ) )  e.  CC )
10099addid2d 9256 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( 0  +  ( p  pCnt  ( (
( 2  x.  N
)  -  1 )  _C  N ) ) )  =  ( p 
pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) )
101100adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
( 0  +  ( p  pCnt  ( (
( 2  x.  N
)  -  1 )  _C  N ) ) )  =  ( p 
pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) )
102 bcval2 11584 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  ( 0 ... ( ( 2  x.  N )  -  1 ) )  ->  (
( ( 2  x.  N )  -  1 )  _C  N )  =  ( ( ! `
 ( ( 2  x.  N )  - 
1 ) )  / 
( ( ! `  ( ( ( 2  x.  N )  - 
1 )  -  N
) )  x.  ( ! `  N )
) ) )
10350, 102syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  -  1 )  _C  N )  =  ( ( ! `
 ( ( 2  x.  N )  - 
1 ) )  / 
( ( ! `  ( ( ( 2  x.  N )  - 
1 )  -  N
) )  x.  ( ! `  N )
) ) )
10444oveq1d 6087 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  -  1 )  =  ( ( N  +  N )  - 
1 ) )
10517a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( N  e.  NN  ->  1  e.  CC )
10621, 21, 105addsubassd 9420 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  NN  ->  (
( N  +  N
)  -  1 )  =  ( N  +  ( N  -  1
) ) )
107104, 106eqtrd 2467 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  -  1 )  =  ( N  +  ( N  -  1
) ) )
108107oveq1d 6087 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  -  1 )  -  N )  =  ( ( N  +  ( N  - 
1 ) )  -  N ) )
10932nn0cnd 10265 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  CC )
11021, 109pncan2d 9402 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN  ->  (
( N  +  ( N  -  1 ) )  -  N )  =  ( N  - 
1 ) )
111108, 110eqtrd 2467 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  -  1 )  -  N )  =  ( N  - 
1 ) )
112111fveq2d 5723 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( N  e.  NN  ->  ( ! `  ( (
( 2  x.  N
)  -  1 )  -  N ) )  =  ( ! `  ( N  -  1
) ) )
113112oveq1d 6087 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN  ->  (
( ! `  (
( ( 2  x.  N )  -  1 )  -  N ) )  x.  ( ! `
 N ) )  =  ( ( ! `
 ( N  - 
1 ) )  x.  ( ! `  N
) ) )
114113oveq2d 6088 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN  ->  (
( ! `  (
( 2  x.  N
)  -  1 ) )  /  ( ( ! `  ( ( ( 2  x.  N
)  -  1 )  -  N ) )  x.  ( ! `  N ) ) )  =  ( ( ! `
 ( ( 2  x.  N )  - 
1 ) )  / 
( ( ! `  ( N  -  1
) )  x.  ( ! `  N )
) ) )
115103, 114eqtrd 2467 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  -  1 )  _C  N )  =  ( ( ! `
 ( ( 2  x.  N )  - 
1 ) )  / 
( ( ! `  ( N  -  1
) )  x.  ( ! `  N )
) ) )
116115adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( ( ( 2  x.  N )  - 
1 )  _C  N
)  =  ( ( ! `  ( ( 2  x.  N )  -  1 ) )  /  ( ( ! `
 ( N  - 
1 ) )  x.  ( ! `  N
) ) ) )
117116oveq2d 6088 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  (
( ( 2  x.  N )  -  1 )  _C  N ) )  =  ( p 
pCnt  ( ( ! `
 ( ( 2  x.  N )  - 
1 ) )  / 
( ( ! `  ( N  -  1
) )  x.  ( ! `  N )
) ) ) )
118 nnz 10292 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ! `  ( ( 2  x.  N )  -  1 ) )  e.  NN  ->  ( ! `  ( (
2  x.  N )  -  1 ) )  e.  ZZ )
119 nnne0 10021 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ! `  ( ( 2  x.  N )  -  1 ) )  e.  NN  ->  ( ! `  ( (
2  x.  N )  -  1 ) )  =/=  0 )
120118, 119jca 519 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ! `  ( ( 2  x.  N )  -  1 ) )  e.  NN  ->  (
( ! `  (
( 2  x.  N
)  -  1 ) )  e.  ZZ  /\  ( ! `  ( ( 2  x.  N )  -  1 ) )  =/=  0 ) )
12190, 120syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  (
( ! `  (
( 2  x.  N
)  -  1 ) )  e.  ZZ  /\  ( ! `  ( ( 2  x.  N )  -  1 ) )  =/=  0 ) )
122121adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( ( ! `  ( ( 2  x.  N )  -  1 ) )  e.  ZZ  /\  ( ! `  (
( 2  x.  N
)  -  1 ) )  =/=  0 ) )
123 faccl 11564 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( N  -  1 )  e.  NN0  ->  ( ! `
 ( N  - 
1 ) )  e.  NN )
12432, 123syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN  ->  ( ! `  ( N  -  1 ) )  e.  NN )
125 faccl 11564 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
12612, 125syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN  ->  ( ! `  N )  e.  NN )
127124, 126nnmulcld 10036 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  (
( ! `  ( N  -  1 ) )  x.  ( ! `
 N ) )  e.  NN )
128127adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( ( ! `  ( N  -  1
) )  x.  ( ! `  N )
)  e.  NN )
129 pcdiv 13214 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p  e.  Prime  /\  (
( ! `  (
( 2  x.  N
)  -  1 ) )  e.  ZZ  /\  ( ! `  ( ( 2  x.  N )  -  1 ) )  =/=  0 )  /\  ( ( ! `  ( N  -  1
) )  x.  ( ! `  N )
)  e.  NN )  ->  ( p  pCnt  ( ( ! `  (
( 2  x.  N
)  -  1 ) )  /  ( ( ! `  ( N  -  1 ) )  x.  ( ! `  N ) ) ) )  =  ( ( p  pCnt  ( ! `  ( ( 2  x.  N )  -  1 ) ) )  -  ( p  pCnt  ( ( ! `  ( N  -  1 ) )  x.  ( ! `  N ) ) ) ) )
13067, 122, 128, 129syl3anc 1184 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  (
( ! `  (
( 2  x.  N
)  -  1 ) )  /  ( ( ! `  ( N  -  1 ) )  x.  ( ! `  N ) ) ) )  =  ( ( p  pCnt  ( ! `  ( ( 2  x.  N )  -  1 ) ) )  -  ( p  pCnt  ( ( ! `  ( N  -  1 ) )  x.  ( ! `  N ) ) ) ) )
131 nnz 10292 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ! `  ( N  -  1 ) )  e.  NN  ->  ( ! `  ( N  -  1 ) )  e.  ZZ )
132 nnne0 10021 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ! `  ( N  -  1 ) )  e.  NN  ->  ( ! `  ( N  -  1 ) )  =/=  0 )
133131, 132jca 519 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ! `  ( N  -  1 ) )  e.  NN  ->  (
( ! `  ( N  -  1 ) )  e.  ZZ  /\  ( ! `  ( N  -  1 ) )  =/=  0 ) )
134124, 133syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN  ->  (
( ! `  ( N  -  1 ) )  e.  ZZ  /\  ( ! `  ( N  -  1 ) )  =/=  0 ) )
135134adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( ( ! `  ( N  -  1
) )  e.  ZZ  /\  ( ! `  ( N  -  1 ) )  =/=  0 ) )
136 nnz 10292 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ! `  N )  e.  NN  ->  ( ! `  N )  e.  ZZ )
137 nnne0 10021 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ! `  N )  e.  NN  ->  ( ! `  N )  =/=  0 )
138136, 137jca 519 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ! `  N )  e.  NN  ->  (
( ! `  N
)  e.  ZZ  /\  ( ! `  N )  =/=  0 ) )
139126, 138syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN  ->  (
( ! `  N
)  e.  ZZ  /\  ( ! `  N )  =/=  0 ) )
140139adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( ( ! `  N )  e.  ZZ  /\  ( ! `  N
)  =/=  0 ) )
141 pcmul 13213 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( p  e.  Prime  /\  (
( ! `  ( N  -  1 ) )  e.  ZZ  /\  ( ! `  ( N  -  1 ) )  =/=  0 )  /\  ( ( ! `  N )  e.  ZZ  /\  ( ! `  N
)  =/=  0 ) )  ->  ( p  pCnt  ( ( ! `  ( N  -  1
) )  x.  ( ! `  N )
) )  =  ( ( p  pCnt  ( ! `  ( N  -  1 ) ) )  +  ( p 
pCnt  ( ! `  N ) ) ) )
14267, 135, 140, 141syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  (
( ! `  ( N  -  1 ) )  x.  ( ! `
 N ) ) )  =  ( ( p  pCnt  ( ! `  ( N  -  1 ) ) )  +  ( p  pCnt  ( ! `  N )
) ) )
143142oveq2d 6088 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( ( p  pCnt  ( ! `  ( ( 2  x.  N )  -  1 ) ) )  -  ( p 
pCnt  ( ( ! `
 ( N  - 
1 ) )  x.  ( ! `  N
) ) ) )  =  ( ( p 
pCnt  ( ! `  ( ( 2  x.  N )  -  1 ) ) )  -  ( ( p  pCnt  ( ! `  ( N  -  1 ) ) )  +  ( p 
pCnt  ( ! `  N ) ) ) ) )
144117, 130, 1433eqtrd 2471 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  (
( ( 2  x.  N )  -  1 )  _C  N ) )  =  ( ( p  pCnt  ( ! `  ( ( 2  x.  N )  -  1 ) ) )  -  ( ( p  pCnt  ( ! `  ( N  -  1 ) ) )  +  ( p 
pCnt  ( ! `  N ) ) ) ) )
145144adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
( p  pCnt  (
( ( 2  x.  N )  -  1 )  _C  N ) )  =  ( ( p  pCnt  ( ! `  ( ( 2  x.  N )  -  1 ) ) )  -  ( ( p  pCnt  ( ! `  ( N  -  1 ) ) )  +  ( p 
pCnt  ( ! `  N ) ) ) ) )
146 simprr 734 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  ->  -.  p  <_  N )
147 prmfac1 13106 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  NN0  /\  p  e.  Prime  /\  p  ||  ( ! `  N
) )  ->  p  <_  N )
1481473expia 1155 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  NN0  /\  p  e.  Prime )  -> 
( p  ||  ( ! `  N )  ->  p  <_  N )
)
14912, 148sylan 458 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  ||  ( ! `  N )  ->  p  <_  N )
)
150149adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
( p  ||  ( ! `  N )  ->  p  <_  N )
)
151146, 150mtod 170 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  ->  -.  p  ||  ( ! `
 N ) )
15280adantl 453 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  NN  /\  p  e.  Prime )  ->  p  e.  ZZ )
153135simpld 446 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( ! `  ( N  -  1 ) )  e.  ZZ )
154 nnz 10292 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN  ->  N  e.  ZZ )
155154adantr 452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  NN  /\  p  e.  Prime )  ->  N  e.  ZZ )
156 dvdsmultr1 12872 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( p  e.  ZZ  /\  ( ! `  ( N  -  1 ) )  e.  ZZ  /\  N  e.  ZZ )  ->  (
p  ||  ( ! `  ( N  -  1 ) )  ->  p  ||  ( ( ! `  ( N  -  1
) )  x.  N
) ) )
157152, 153, 155, 156syl3anc 1184 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  ||  ( ! `  ( N  -  1 ) )  ->  p  ||  (
( ! `  ( N  -  1 ) )  x.  N ) ) )
158 facnn2 11563 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN  ->  ( ! `  N )  =  ( ( ! `
 ( N  - 
1 ) )  x.  N ) )
159158adantr 452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( ! `  N
)  =  ( ( ! `  ( N  -  1 ) )  x.  N ) )
160159breq2d 4216 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  ||  ( ! `  N )  <->  p 
||  ( ( ! `
 ( N  - 
1 ) )  x.  N ) ) )
161157, 160sylibrd 226 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  ||  ( ! `  ( N  -  1 ) )  ->  p  ||  ( ! `  N )
) )
162161adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
( p  ||  ( ! `  ( N  -  1 ) )  ->  p  ||  ( ! `  N )
) )
163151, 162mtod 170 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  ->  -.  p  ||  ( ! `
 ( N  - 
1 ) ) )
164 pceq0 13232 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( p  e.  Prime  /\  ( ! `  ( N  -  1 ) )  e.  NN )  -> 
( ( p  pCnt  ( ! `  ( N  -  1 ) ) )  =  0  <->  -.  p  ||  ( ! `  ( N  -  1
) ) ) )
16588, 124, 164syl2anr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( ( p  pCnt  ( ! `  ( N  -  1 ) ) )  =  0  <->  -.  p  ||  ( ! `  ( N  -  1
) ) ) )
166165adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
( ( p  pCnt  ( ! `  ( N  -  1 ) ) )  =  0  <->  -.  p  ||  ( ! `  ( N  -  1
) ) ) )
167163, 166mpbird 224 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
( p  pCnt  ( ! `  ( N  -  1 ) ) )  =  0 )
168 pceq0 13232 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( p  e.  Prime  /\  ( ! `  N )  e.  NN )  ->  (
( p  pCnt  ( ! `  N )
)  =  0  <->  -.  p  ||  ( ! `  N ) ) )
16988, 126, 168syl2anr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( ( p  pCnt  ( ! `  N ) )  =  0  <->  -.  p  ||  ( ! `  N ) ) )
170169adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
( ( p  pCnt  ( ! `  N ) )  =  0  <->  -.  p  ||  ( ! `  N ) ) )
171151, 170mpbird 224 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
( p  pCnt  ( ! `  N )
)  =  0 )
172167, 171oveq12d 6090 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
( ( p  pCnt  ( ! `  ( N  -  1 ) ) )  +  ( p 
pCnt  ( ! `  N ) ) )  =  ( 0  +  0 ) )
173 00id 9230 . . . . . . . . . . . . . . . . . 18  |-  ( 0  +  0 )  =  0
174172, 173syl6eq 2483 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
( ( p  pCnt  ( ! `  ( N  -  1 ) ) )  +  ( p 
pCnt  ( ! `  N ) ) )  =  0 )
175174oveq2d 6088 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
( ( p  pCnt  ( ! `  ( ( 2  x.  N )  -  1 ) ) )  -  ( ( p  pCnt  ( ! `  ( N  -  1 ) ) )  +  ( p  pCnt  ( ! `  N )
) ) )  =  ( ( p  pCnt  ( ! `  ( ( 2  x.  N )  -  1 ) ) )  -  0 ) )
176 pccl 13211 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( p  e.  Prime  /\  ( ! `  ( (
2  x.  N )  -  1 ) )  e.  NN )  -> 
( p  pCnt  ( ! `  ( (
2  x.  N )  -  1 ) ) )  e.  NN0 )
17788, 90, 176syl2anr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  ( ! `  ( (
2  x.  N )  -  1 ) ) )  e.  NN0 )
178177nn0cnd 10265 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  ( ! `  ( (
2  x.  N )  -  1 ) ) )  e.  CC )
179178subid1d 9389 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( ( p  pCnt  ( ! `  ( ( 2  x.  N )  -  1 ) ) )  -  0 )  =  ( p  pCnt  ( ! `  ( ( 2  x.  N )  -  1 ) ) ) )
180179adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
( ( p  pCnt  ( ! `  ( ( 2  x.  N )  -  1 ) ) )  -  0 )  =  ( p  pCnt  ( ! `  ( ( 2  x.  N )  -  1 ) ) ) )
181145, 175, 1803eqtrd 2471 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
( p  pCnt  (
( ( 2  x.  N )  -  1 )  _C  N ) )  =  ( p 
pCnt  ( ! `  ( ( 2  x.  N )  -  1 ) ) ) )
18298, 101, 1813eqtrd 2471 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
( if ( p  <_  N ,  1 ,  0 )  +  ( p  pCnt  (
( ( 2  x.  N )  -  1 )  _C  N ) ) )  =  ( p  pCnt  ( ! `  ( ( 2  x.  N )  -  1 ) ) ) )
18395, 182breqtrrd 4230 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  ( p  <_  (
( 2  x.  N
)  -  1 )  /\  -.  p  <_  N ) )  -> 
1  <_  ( if ( p  <_  N , 
1 ,  0 )  +  ( p  pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) )
184183expr 599 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  ( ( 2  x.  N )  -  1 ) )  ->  ( -.  p  <_  N  ->  1  <_  ( if ( p  <_  N ,  1 , 
0 )  +  ( p  pCnt  ( (
( 2  x.  N
)  -  1 )  _C  N ) ) ) ) )
18576, 184pm2.61d 152 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  ( ( 2  x.  N )  -  1 ) )  ->  1  <_  ( if ( p  <_  N ,  1 ,  0 )  +  ( p 
pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) )
18666, 185eqbrtrd 4224 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  p  <_  ( ( 2  x.  N )  -  1 ) )  ->  if ( p  <_  ( ( 2  x.  N )  - 
1 ) ,  1 ,  0 )  <_ 
( if ( p  <_  N ,  1 ,  0 )  +  ( p  pCnt  (
( ( 2  x.  N )  -  1 )  _C  N ) ) ) )
187186ex 424 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  <_  (
( 2  x.  N
)  -  1 )  ->  if ( p  <_  ( ( 2  x.  N )  - 
1 ) ,  1 ,  0 )  <_ 
( if ( p  <_  N ,  1 ,  0 )  +  ( p  pCnt  (
( ( 2  x.  N )  -  1 )  _C  N ) ) ) ) )
188 1nn0 10226 . . . . . . . . . . . . 13  |-  1  e.  NN0
189 0nn0 10225 . . . . . . . . . . . . 13  |-  0  e.  NN0
190188, 189keepel 3788 . . . . . . . . . . . 12  |-  if ( p  <_  N , 
1 ,  0 )  e.  NN0
191 nn0addcl 10244 . . . . . . . . . . . 12  |-  ( ( if ( p  <_  N ,  1 , 
0 )  e.  NN0  /\  ( p  pCnt  (
( ( 2  x.  N )  -  1 )  _C  N ) )  e.  NN0 )  ->  ( if ( p  <_  N ,  1 ,  0 )  +  ( p  pCnt  (
( ( 2  x.  N )  -  1 )  _C  N ) ) )  e.  NN0 )
192190, 69, 191sylancr 645 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( if ( p  <_  N ,  1 ,  0 )  +  ( p  pCnt  (
( ( 2  x.  N )  -  1 )  _C  N ) ) )  e.  NN0 )
193192nn0ge0d 10266 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
0  <_  ( if ( p  <_  N , 
1 ,  0 )  +  ( p  pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) )
194 iffalse 3738 . . . . . . . . . . 11  |-  ( -.  p  <_  ( (
2  x.  N )  -  1 )  ->  if ( p  <_  (
( 2  x.  N
)  -  1 ) ,  1 ,  0 )  =  0 )
195194breq1d 4214 . . . . . . . . . 10  |-  ( -.  p  <_  ( (
2  x.  N )  -  1 )  -> 
( if ( p  <_  ( ( 2  x.  N )  - 
1 ) ,  1 ,  0 )  <_ 
( if ( p  <_  N ,  1 ,  0 )  +  ( p  pCnt  (
( ( 2  x.  N )  -  1 )  _C  N ) ) )  <->  0  <_  ( if ( p  <_  N ,  1 , 
0 )  +  ( p  pCnt  ( (
( 2  x.  N
)  -  1 )  _C  N ) ) ) ) )
196193, 195syl5ibrcom 214 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( -.  p  <_ 
( ( 2  x.  N )  -  1 )  ->  if (
p  <_  ( (
2  x.  N )  -  1 ) ,  1 ,  0 )  <_  ( if ( p  <_  N , 
1 ,  0 )  +  ( p  pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) ) )
197187, 196pm2.61d 152 . . . . . . . 8  |-  ( ( N  e.  NN  /\  p  e.  Prime )  ->  if ( p  <_  (
( 2  x.  N
)  -  1 ) ,  1 ,  0 )  <_  ( if ( p  <_  N , 
1 ,  0 )  +  ( p  pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) )
198 eqid 2435 . . . . . . . . . . . . 13  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  n ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  n ,  1 ) )
199198prmorcht 20949 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  N
)  -  1 )  e.  NN  ->  ( exp `  ( theta `  (
( 2  x.  N
)  -  1 ) ) )  =  (  seq  1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  n ,  1 ) ) ) `
 ( ( 2  x.  N )  - 
1 ) ) )
20037, 199syl 16 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( exp `  ( theta `  (
( 2  x.  N
)  -  1 ) ) )  =  (  seq  1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  n ,  1 ) ) ) `
 ( ( 2  x.  N )  - 
1 ) ) )
201200oveq2d 6088 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
p  pCnt  ( exp `  ( theta `  ( (
2  x.  N )  -  1 ) ) ) )  =  ( p  pCnt  (  seq  1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  n ,  1 ) ) ) `  (
( 2  x.  N
)  -  1 ) ) ) )
202201adantr 452 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  ( exp `  ( theta `  (
( 2  x.  N
)  -  1 ) ) ) )  =  ( p  pCnt  (  seq  1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  n ,  1 ) ) ) `  (
( 2  x.  N
)  -  1 ) ) ) )
203 nncn 9997 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  n  e.  CC )
204203exp1d 11506 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
n ^ 1 )  =  n )
205204ifeq1d 3745 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  if ( n  e.  Prime ,  ( n ^ 1 ) ,  1 )  =  if ( n  e.  Prime ,  n ,  1 ) )
206205mpteq2ia 4283 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ 1 ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  n ,  1 ) )
207206eqcomi 2439 . . . . . . . . . 10  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  n ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ 1 ) ,  1 ) )
208188a1i 11 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  p  e.  Prime )  /\  n  e.  Prime )  ->  1  e.  NN0 )
209208ralrimiva 2781 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  p  e.  Prime )  ->  A. n  e.  Prime  1  e.  NN0 )
21037adantr 452 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( ( 2  x.  N )  -  1 )  e.  NN )
211 eqidd 2436 . . . . . . . . . 10  |-  ( n  =  p  ->  1  =  1 )
212207, 209, 210, 67, 211pcmpt 13249 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  (  seq  1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  n ,  1 ) ) ) `  (
( 2  x.  N
)  -  1 ) ) )  =  if ( p  <_  (
( 2  x.  N
)  -  1 ) ,  1 ,  0 ) )
213202, 212eqtrd 2467 . . . . . . . 8  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  ( exp `  ( theta `  (
( 2  x.  N
)  -  1 ) ) ) )  =  if ( p  <_ 
( ( 2  x.  N )  -  1 ) ,  1 ,  0 ) )
214 efchtcl 20882 . . . . . . . . . . . . 13  |-  ( N  e.  RR  ->  ( exp `  ( theta `  N
) )  e.  NN )
2159, 214syl 16 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  ( exp `  ( theta `  N
) )  e.  NN )
216215adantr 452 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( exp `  ( theta `  N ) )  e.  NN )
217 nnz 10292 . . . . . . . . . . . 12  |-  ( ( exp `  ( theta `  N ) )  e.  NN  ->  ( exp `  ( theta `  N )
)  e.  ZZ )
218 nnne0 10021 . . . . . . . . . . . 12  |-  ( ( exp `  ( theta `  N ) )  e.  NN  ->  ( exp `  ( theta `  N )
)  =/=  0 )
219217, 218jca 519 . . . . . . . . . . 11  |-  ( ( exp `  ( theta `  N ) )  e.  NN  ->  ( ( exp `  ( theta `  N
) )  e.  ZZ  /\  ( exp `  ( theta `  N ) )  =/=  0 ) )
220216, 219syl 16 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( ( exp `  ( theta `  N ) )  e.  ZZ  /\  ( exp `  ( theta `  N
) )  =/=  0
) )
221 nnz 10292 . . . . . . . . . . . 12  |-  ( ( ( ( 2  x.  N )  -  1 )  _C  N )  e.  NN  ->  (
( ( 2  x.  N )  -  1 )  _C  N )  e.  ZZ )
222 nnne0 10021 . . . . . . . . . . . 12  |-  ( ( ( ( 2  x.  N )  -  1 )  _C  N )  e.  NN  ->  (
( ( 2  x.  N )  -  1 )  _C  N )  =/=  0 )
223221, 222jca 519 . . . . . . . . . . 11  |-  ( ( ( ( 2  x.  N )  -  1 )  _C  N )  e.  NN  ->  (
( ( ( 2  x.  N )  - 
1 )  _C  N
)  e.  ZZ  /\  ( ( ( 2  x.  N )  - 
1 )  _C  N
)  =/=  0 ) )
22468, 223syl 16 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( ( ( ( 2  x.  N )  -  1 )  _C  N )  e.  ZZ  /\  ( ( ( 2  x.  N )  - 
1 )  _C  N
)  =/=  0 ) )
225 pcmul 13213 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  (
( exp `  ( theta `  N ) )  e.  ZZ  /\  ( exp `  ( theta `  N
) )  =/=  0
)  /\  ( (
( ( 2  x.  N )  -  1 )  _C  N )  e.  ZZ  /\  (
( ( 2  x.  N )  -  1 )  _C  N )  =/=  0 ) )  ->  ( p  pCnt  ( ( exp `  ( theta `  N ) )  x.  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) )  =  ( ( p 
pCnt  ( exp `  ( theta `  N ) ) )  +  ( p 
pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) )
22667, 220, 224, 225syl3anc 1184 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  (
( exp `  ( theta `  N ) )  x.  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) )  =  ( ( p 
pCnt  ( exp `  ( theta `  N ) ) )  +  ( p 
pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) )
227198prmorcht 20949 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  ( exp `  ( theta `  N
) )  =  (  seq  1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  n ,  1 ) ) ) `
 N ) )
228227oveq2d 6088 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
p  pCnt  ( exp `  ( theta `  N )
) )  =  ( p  pCnt  (  seq  1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  n ,  1 ) ) ) `  N
) ) )
229228adantr 452 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  ( exp `  ( theta `  N
) ) )  =  ( p  pCnt  (  seq  1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  n ,  1 ) ) ) `  N
) ) )
230 simpl 444 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  p  e.  Prime )  ->  N  e.  NN )
231207, 209, 230, 67, 211pcmpt 13249 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  (  seq  1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  n ,  1 ) ) ) `  N
) )  =  if ( p  <_  N ,  1 ,  0 ) )
232229, 231eqtrd 2467 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  ( exp `  ( theta `  N
) ) )  =  if ( p  <_  N ,  1 , 
0 ) )
233232oveq1d 6087 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( ( p  pCnt  ( exp `  ( theta `  N ) ) )  +  ( p  pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) )  =  ( if ( p  <_  N ,  1 , 
0 )  +  ( p  pCnt  ( (
( 2  x.  N
)  -  1 )  _C  N ) ) ) )
234226, 233eqtrd 2467 . . . . . . . 8  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  (
( exp `  ( theta `  N ) )  x.  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) )  =  ( if ( p  <_  N , 
1 ,  0 )  +  ( p  pCnt  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) )
235197, 213, 2343brtr4d 4234 . . . . . . 7  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  ( exp `  ( theta `  (
( 2  x.  N
)  -  1 ) ) ) )  <_ 
( p  pCnt  (
( exp `  ( theta `  N ) )  x.  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) )
236235ralrimiva 2781 . . . . . 6  |-  ( N  e.  NN  ->  A. p  e.  Prime  ( p  pCnt  ( exp `  ( theta `  ( ( 2  x.  N )  -  1 ) ) ) )  <_  ( p  pCnt  ( ( exp `  ( theta `  N ) )  x.  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) )
237 efchtcl 20882 . . . . . . . . 9  |-  ( ( ( 2  x.  N
)  -  1 )  e.  RR  ->  ( exp `  ( theta `  (
( 2  x.  N
)  -  1 ) ) )  e.  NN )
2386, 237syl 16 . . . . . . . 8  |-  ( N  e.  NN  ->  ( exp `  ( theta `  (
( 2  x.  N
)  -  1 ) ) )  e.  NN )
239238nnzd 10363 . . . . . . 7  |-  ( N  e.  NN  ->  ( exp `  ( theta `  (
( 2  x.  N
)  -  1 ) ) )  e.  ZZ )
240215, 52nnmulcld 10036 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( exp `  ( theta `  N ) )  x.  ( ( ( 2  x.  N )  -  1 )  _C  N ) )  e.  NN )
241240nnzd 10363 . . . . . . 7  |-  ( N  e.  NN  ->  (
( exp `  ( theta `  N ) )  x.  ( ( ( 2  x.  N )  -  1 )  _C  N ) )  e.  ZZ )
242 pc2dvds 13240 . . . . . . 7  |-  ( ( ( exp `  ( theta `  ( ( 2  x.  N )  - 
1 ) ) )  e.  ZZ  /\  (
( exp `  ( theta `  N ) )  x.  ( ( ( 2  x.  N )  -  1 )  _C  N ) )  e.  ZZ )  ->  (
( exp `  ( theta `  ( ( 2  x.  N )  - 
1 ) ) ) 
||  ( ( exp `  ( theta `  N )
)  x.  ( ( ( 2  x.  N
)  -  1 )  _C  N ) )  <->  A. p  e.  Prime  ( p  pCnt  ( exp `  ( theta `  ( (
2  x.  N )  -  1 ) ) ) )  <_  (
p  pCnt  ( ( exp `  ( theta `  N
) )  x.  (
( ( 2  x.  N )  -  1 )  _C  N ) ) ) ) )
243239, 241, 242syl2anc 643 . . . . . 6  |-  ( N  e.  NN  ->  (
( exp `  ( theta `  ( ( 2  x.  N )  - 
1 ) ) ) 
||  ( ( exp `  ( theta `  N )
)  x.  ( ( ( 2  x.  N
)  -  1 )  _C  N ) )  <->  A. p  e.  Prime  ( p  pCnt  ( exp `  ( theta `  ( (
2  x.  N )  -  1 ) ) ) )  <_  (
p  pCnt  ( ( exp `  ( theta `  N
) )  x.  (
( ( 2  x.  N )  -  1 )  _C  N ) ) ) ) )
244236, 243mpbird 224 . . . . 5  |-  ( N  e.  NN  ->  ( exp `  ( theta `  (
( 2  x.  N
)  -  1 ) ) )  ||  (
( exp `  ( theta `  N ) )  x.  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) )
245 dvdsle 12883 . . . . . 6  |-  ( ( ( exp `  ( theta `  ( ( 2  x.  N )  - 
1 ) ) )  e.  ZZ  /\  (
( exp `  ( theta `  N ) )  x.  ( ( ( 2  x.  N )  -  1 )  _C  N ) )  e.  NN )  ->  (
( exp `  ( theta `  ( ( 2  x.  N )  - 
1 ) ) ) 
||  ( ( exp `  ( theta `  N )
)  x.  ( ( ( 2  x.  N
)  -  1 )  _C  N ) )  ->  ( exp `  ( theta `  ( ( 2  x.  N )  - 
1 ) ) )  <_  ( ( exp `  ( theta `  N )
)  x.  ( ( ( 2  x.  N
)  -  1 )  _C  N ) ) ) )
246239, 240, 245syl2anc 643 . . . . 5  |-  ( N  e.  NN  ->  (
( exp `  ( theta `  ( ( 2  x.  N )  - 
1 ) ) ) 
||  ( ( exp `  ( theta `  N )
)  x.  ( ( ( 2  x.  N
)  -  1 )  _C  N ) )  ->  ( exp `  ( theta `  ( ( 2  x.  N )  - 
1 ) ) )  <_  ( ( exp `  ( theta `  N )
)  x.  ( ( ( 2  x.  N
)  -  1 )  _C  N ) ) ) )
247244, 246mpd 15 . . . 4  |-  ( N  e.  NN  ->  ( exp `  ( theta `  (
( 2  x.  N
)  -  1 ) ) )  <_  (
( exp `  ( theta `  N ) )  x.  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) )
24811recnd 9103 . . . . . 6  |-  ( N  e.  NN  ->  ( theta `  N )  e.  CC )
24954recnd 9103 . . . . . 6  |-  ( N  e.  NN  ->  ( log `  ( ( ( 2  x.  N )  -  1 )  _C  N ) )  e.  CC )
250 efadd 12684 . . . . . 6  |-  ( ( ( theta `  N )  e.  CC  /\  ( log `  ( ( ( 2  x.  N )  - 
1 )  _C  N
) )  e.  CC )  ->  ( exp `  (
( theta `  N )  +  ( log `  (
( ( 2  x.  N )  -  1 )  _C  N ) ) ) )  =  ( ( exp `  ( theta `  N ) )  x.  ( exp `  ( log `  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) ) )
251248, 249, 250syl2anc 643 . . . . 5  |-  ( N  e.  NN  ->  ( exp `  ( ( theta `  N )  +  ( log `  ( ( ( 2  x.  N
)  -  1 )  _C  N ) ) ) )  =  ( ( exp `  ( theta `  N ) )  x.  ( exp `  ( log `  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) ) )
25253reeflogd 20507 . . . . . 6  |-  ( N  e.  NN  ->  ( exp `  ( log `  (
( ( 2  x.  N )  -  1 )  _C  N ) ) )  =  ( ( ( 2  x.  N )  -  1 )  _C  N ) )
253252oveq2d 6088 . . . . 5  |-  ( N  e.  NN  ->  (
( exp `  ( theta `  N ) )  x.  ( exp `  ( log `  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) ) )  =  ( ( exp `  ( theta `  N ) )  x.  ( ( ( 2  x.  N )  - 
1 )  _C  N
) ) )
254251, 253eqtrd 2467 . . . 4  |-  ( N  e.  NN  ->  ( exp `  ( ( theta `  N )  +  ( log `  ( ( ( 2  x.  N
)  -  1 )  _C  N ) ) ) )  =  ( ( exp `  ( theta `  N ) )  x.  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) )
255247, 254breqtrrd 4230 . . 3  |-  ( N  e.  NN  ->  ( exp `  ( theta `  (
( 2  x.  N
)  -  1 ) ) )  <_  ( exp `  ( ( theta `  N )  +  ( log `  ( ( ( 2  x.  N
)  -  1 )  _C  N ) ) ) ) )
256 efle 12707 . . . 4  |-  ( ( ( theta `  ( (
2  x.  N )  -  1 ) )  e.  RR  /\  (
( theta `  N )  +  ( log `  (
( ( 2  x.  N )  -  1 )  _C  N ) ) )  e.  RR )  ->  ( ( theta `  ( ( 2  x.  N )  -  1 ) )  <_  (
( theta `  N )  +  ( log `  (
( ( 2  x.  N )  -  1 )  _C  N ) ) )  <->  ( exp `  ( theta `  ( (
2  x.  N )  -  1 ) ) )  <_  ( exp `  ( ( theta `  N
)  +  ( log `  ( ( ( 2  x.  N )  - 
1 )  _C  N
) ) ) ) ) )
2578, 55, 256syl2anc 643 . . 3  |-  ( N  e.  NN  ->  (
( theta `  ( (
2  x.  N )  -  1 ) )  <_  ( ( theta `  N )  +  ( log `  ( ( ( 2  x.  N
)  -  1 )  _C  N ) ) )  <->  ( exp `  ( theta `  ( ( 2  x.  N )  - 
1 ) ) )  <_  ( exp `  (
( theta `  N )  +  ( log `  (
( ( 2  x.  N )  -  1 )  _C  N ) ) ) ) ) )
258255, 257mpbird 224 . 2  |-  ( N  e.  NN  ->  ( theta `  ( ( 2  x.  N )  - 
1 ) )  <_ 
( ( theta `  N
)  +  ( log `  ( ( ( 2  x.  N )  - 
1 )  _C  N
) ) ) )
259 fzfid 11300 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
0 ... ( ( 2  x.  N )  - 
1 ) )  e. 
Fin )
260 elfzelz 11048 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( ( 2  x.  N )  -  1 ) )  ->  k  e.  ZZ )
261 bccl 11601 . . . . . . . . . . 11  |-  ( ( ( ( 2  x.  N )  -  1 )  e.  NN0  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  N )  - 
1 )  _C  k
)  e.  NN0 )
26239, 260, 261syl2an 464 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( ( 2  x.  N )  - 
1 ) ) )  ->  ( ( ( 2  x.  N )  -  1 )  _C  k )  e.  NN0 )
263262nn0red 10264 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( ( 2  x.  N )  - 
1 ) ) )  ->  ( ( ( 2  x.  N )  -  1 )  _C  k )  e.  RR )
264262nn0ge0d 10266 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( ( 2  x.  N )  - 
1 ) ) )  ->  0  <_  (
( ( 2  x.  N )  -  1 )  _C  k ) )
265 nn0uz 10509 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
26632, 265syl6eleq 2525 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  ( ZZ>= `  0
) )
267 fzss1 11080 . . . . . . . . . . 11  |-  ( ( N  -  1 )  e.  ( ZZ>= `  0
)  ->  ( ( N  -  1 ) ... N )  C_  ( 0 ... N
) )
268266, 267syl 16 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  -  1 ) ... N ) 
C_  ( 0 ... N ) )
269 eluz 10488 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  ( ( 2  x.  N )  -  1 )  e.  ZZ )  ->  ( ( ( 2  x.  N )  -  1 )  e.  ( ZZ>= `  N )  <->  N  <_  ( ( 2  x.  N )  - 
1 ) ) )
270154, 81, 269syl2anc 643 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  -  1 )  e.  ( ZZ>= `  N )  <->  N  <_  ( ( 2  x.  N
)  -  1 ) ) )
27148, 270mpbird 224 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  -  1 )  e.  ( ZZ>= `  N
) )
272 fzss2 11081 . . . . . . . . . . 11  |-  ( ( ( 2  x.  N
)  -  1 )  e.  ( ZZ>= `  N
)  ->  ( 0 ... N )  C_  ( 0 ... (
( 2  x.  N
)  -  1 ) ) )
273271, 272syl 16 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
0 ... N )  C_  ( 0 ... (
( 2  x.  N
)  -  1 ) ) )
274268, 273sstrd 3350 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( N  -  1 ) ... N ) 
C_  ( 0 ... ( ( 2  x.  N )  -  1 ) ) )
275259, 263, 264, 274fsumless 12563 . . . . . . . 8  |-  ( N  e.  NN  ->  sum_ k  e.  ( ( N  - 
1 ) ... N
) ( ( ( 2  x.  N )  -  1 )  _C  k )  <_  sum_ k  e.  ( 0 ... (
( 2  x.  N
)  -  1 ) ) ( ( ( 2  x.  N )  -  1 )  _C  k ) )
27632nn0zd 10362 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  ZZ )
277 bccmpl 11588 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 2  x.  N )  -  1 )  e.  NN0  /\  N  e.  ZZ )  ->  ( ( ( 2  x.  N )  - 
1 )  _C  N
)  =  ( ( ( 2  x.  N
)  -  1 )  _C  ( ( ( 2  x.  N )  -  1 )  -  N ) ) )
27839, 154, 277syl2anc 643 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  -  1 )  _C  N )  =  ( ( ( 2  x.  N )  -  1 )  _C  ( ( ( 2  x.  N )  - 
1 )  -  N
) ) )
279111oveq2d 6088 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  -  1 )  _C  ( ( ( 2  x.  N
)  -  1 )  -  N ) )  =  ( ( ( 2  x.  N )  -  1 )  _C  ( N  -  1 ) ) )
280278, 279eqtrd 2467 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  -  1 )  _C  N )  =  ( ( ( 2  x.  N )  -  1 )  _C  ( N  -  1 ) ) )
28152nncnd 10005 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  -  1 )  _C  N )  e.  CC )
282280, 281eqeltrrd 2510 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  -  1 )  _C  ( N  -  1 ) )  e.  CC )
283 oveq2 6080 . . . . . . . . . . . . 13  |-  ( k  =  ( N  - 
1 )  ->  (
( ( 2  x.  N )  -  1 )  _C  k )  =  ( ( ( 2  x.  N )  -  1 )  _C  ( N  -  1 ) ) )
284283fsum1 12523 . . . . . . . . . . . 12  |-  ( ( ( N  -  1 )  e.  ZZ  /\  ( ( ( 2  x.  N )  - 
1 )  _C  ( N  -  1 ) )  e.  CC )  ->  sum_ k  e.  ( ( N  -  1 ) ... ( N  -  1 ) ) ( ( ( 2  x.  N )  - 
1 )  _C  k
)  =  ( ( ( 2  x.  N
)  -  1 )  _C  ( N  - 
1 ) ) )
285276, 282, 284syl2anc 643 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  sum_ k  e.  ( ( N  - 
1 ) ... ( N  -  1 ) ) ( ( ( 2  x.  N )  -  1 )  _C  k )  =  ( ( ( 2  x.  N )  -  1 )  _C  ( N  -  1 ) ) )
286285, 280eqtr4d 2470 . . . . . . . . . 10  |-  ( N  e.  NN  ->  sum_ k  e.  ( ( N  - 
1 ) ... ( N  -  1 ) ) ( ( ( 2  x.  N )  -  1 )  _C  k )  =  ( ( ( 2  x.  N )  -  1 )  _C  N ) )
287286oveq1d 6087 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( sum_ k  e.  ( ( N  -  1 ) ... ( N  - 
1 ) ) ( ( ( 2  x.  N )  -  1 )  _C  k )  +  ( ( ( 2  x.  N )  -  1 )  _C  N ) )  =  ( ( ( ( 2  x.  N )  -  1 )  _C  N )  +  ( ( ( 2  x.  N )  -  1 )  _C  N ) ) )
28821, 105npcand 9404 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( N  -  1 )  +  1 )  =  N )
289 uzid 10489 . . . . . . . . . . . . 13  |-  ( ( N  -  1 )  e.  ZZ  ->  ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
290276, 289syl 16 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
291 peano2uz 10519 . . . . . . . . . . . 12  |-  ( ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
292290, 291syl 16 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
293288, 292eqeltrrd 2510 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  ( N  -  1 ) ) )
294274sselda 3340 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  ( ( N  -  1 ) ... N ) )  ->  k  e.  ( 0 ... ( ( 2  x.  N )  -  1 ) ) )
295262nn0cnd 10265 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( ( 2  x.  N )  - 
1 ) ) )  ->  ( ( ( 2  x.  N )  -  1 )  _C  k )  e.  CC )
296294, 295syldan 457 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  e.  ( ( N  -  1 ) ... N ) )  ->  ( ( ( 2  x.  N )  -  1 )  _C  k )  e.  CC )
297 oveq2 6080 . . . . . . . . . 10  |-  ( k  =  N  ->  (
( ( 2  x.  N )  -  1 )  _C  k )  =  ( ( ( 2  x.  N )  -  1 )  _C  N ) )
298293, 296, 297fsumm1 12525 . . . . . . . . 9  |-  ( N  e.  NN  ->  sum_ k  e.  ( ( N  - 
1 ) ... N
) ( ( ( 2  x.  N )  -  1 )  _C  k )  =  (
sum_ k  e.  ( ( N  -  1 ) ... ( N  -  1 ) ) ( ( ( 2  x.  N )  - 
1 )  _C  k
)  +  ( ( ( 2  x.  N
)  -  1 )  _C  N ) ) )
2992812timesd 10199 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  ( ( ( 2  x.  N
)  -  1 )  _C  N ) )  =  ( ( ( ( 2  x.  N
)  -  1 )  _C  N )  +  ( ( ( 2  x.  N )  - 
1 )  _C  N
) ) )
300287, 298, 2993eqtr4rd 2478 . . . . . . . 8  |-  ( N  e.  NN  ->  (
2  x.  ( ( ( 2  x.  N
)  -  1 )  _C  N ) )  =  sum_ k  e.  ( ( N  -  1 ) ... N ) ( ( ( 2  x.  N )  - 
1 )  _C  k
) )
301 binom11 12599 . . . . . . . . 9  |-  ( ( ( 2  x.  N
)  -  1 )  e.  NN0  ->  ( 2 ^ ( ( 2  x.  N )  - 
1 ) )  = 
sum_ k  e.  ( 0 ... ( ( 2  x.  N )  -  1 ) ) ( ( ( 2  x.  N )  - 
1 )  _C  k
) )
30239, 301syl 16 . . . . . . . 8  |-  ( N  e.  NN  ->  (
2 ^ ( ( 2  x.  N )  -  1 ) )  =  sum_ k  e.  ( 0 ... ( ( 2  x.  N )  -  1 ) ) ( ( ( 2  x.  N )  - 
1 )  _C  k
) )
303275, 300, 3023brtr4d 4234 . . . . . . 7  |-  ( N  e.  NN  ->  (
2  x.  ( ( ( 2  x.  N
)  -  1 )  _C  N ) )  <_  ( 2 ^ ( ( 2  x.  N )  -  1 ) ) )
304 mulcom 9065 . . . . . . . 8  |-  ( ( 2  e.  CC  /\  ( ( ( 2  x.  N )  - 
1 )  _C  N
)  e.  CC )  ->  ( 2  x.  ( ( ( 2  x.  N )  - 
1 )  _C  N
) )  =  ( ( ( ( 2  x.  N )  - 
1 )  _C  N
)  x.  2 ) )
30516, 281, 304sylancr 645 . . . . . . 7  |-  ( N  e.  NN  ->  (
2  x.  ( ( ( 2  x.  N
)  -  1 )  _C  N ) )  =  ( ( ( ( 2  x.  N
)  -  1 )  _C  N )  x.  2 ) )
30630oveq2d 6088 . . . . . . . 8  |-  ( N  e.  NN  ->  (
2 ^ ( ( 2  x.  N )  -  1 ) )  =  ( 2 ^ ( ( 2  x.  ( N  -  1 ) )  +  1 ) ) )
307 expp1 11376 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  ( 2  x.  ( N  -  1 ) )  e.  NN0 )  ->  ( 2 ^ (
( 2  x.  ( N  -  1 ) )  +  1 ) )  =  ( ( 2 ^ ( 2  x.  ( N  - 
1 ) ) )  x.  2 ) )
30816, 34, 307sylancr 645 . . . . . . . 8  |-  ( N  e.  NN  ->  (
2 ^ ( ( 2  x.  ( N  -  1 ) )  +  1 ) )  =  ( ( 2 ^ ( 2  x.  ( N  -  1 ) ) )  x.  2 ) )
30916a1i 11 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  2  e.  CC )
31031a1i 11 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  2  e.  NN0 )
311309, 32, 310expmuld 11514 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
2 ^ ( 2  x.  ( N  - 
1 ) ) )  =  ( ( 2 ^ 2 ) ^
( N  -  1 ) ) )
312 sq2 11465 . . . . . . . . . . 11  |-  ( 2 ^ 2 )  =  4
313312oveq1i 6082 . . . . . . . . . 10  |-  ( ( 2 ^ 2 ) ^ ( N  - 
1 ) )  =  ( 4 ^ ( N  -  1 ) )
314311, 313syl6eq 2483 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2 ^ ( 2  x.  ( N  - 
1 ) ) )  =  ( 4 ^ ( N  -  1 ) ) )
315314oveq1d 6087 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2 ^ (
2  x.  ( N  -  1 ) ) )  x.  2 )  =  ( ( 4 ^ ( N  - 
1 ) )  x.  2 ) )
316306, 308, 3153eqtrd 2471 . . . . . . 7  |-  ( N  e.  NN  ->  (
2 ^ ( ( 2  x.  N )  -  1 ) )  =  ( ( 4 ^ ( N  - 
1 ) )  x.  2 ) )
317303, 305, 3163brtr3d 4233 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  - 
1 )  _C  N
)  x.  2 )  <_  ( ( 4 ^ ( N  - 
1 ) )  x.  2 ) )
31852nnred 10004 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  -  1 )  _C  N )  e.  RR )
319 reexpcl 11386 . . . . . . . 8  |-  ( ( 4  e.  RR  /\  ( N  -  1
)  e.  NN0 )  ->  ( 4 ^ ( N  -  1 ) )  e.  RR )
32056, 32, 319sylancr 645 . . . . . . 7  |-  ( N  e.  NN  ->  (
4 ^ ( N  -  1 ) )  e.  RR )
321 2re 10058 . . . . . . . . 9  |-  2  e.  RR
322 2pos 10071 . . . . . . . . 9  |-  0  <  2
323321, 322pm3.2i 442 . . . . . . . 8  |-  ( 2  e.  RR  /\  0  <  2 )
324323a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  (
2  e.  RR  /\  0  <  2 ) )
325 lemul1 9851 . . . . . . 7  |-  ( ( ( ( ( 2  x.  N )  - 
1 )  _C  N
)  e.  RR  /\  ( 4 ^ ( N  -  1 ) )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
( ( 2  x.  N )  -  1 )  _C  N )  <_  ( 4 ^ ( N  -  1 ) )  <->  ( (
( ( 2  x.  N )  -  1 )  _C  N )  x.  2 )  <_ 
( ( 4 ^ ( N  -  1 ) )  x.  2 ) ) )
326318, 320, 324, 325syl3anc 1184 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  - 
1 )  _C  N
)  <_  ( 4 ^ ( N  - 
1 ) )  <->  ( (
( ( 2  x.  N )  -  1 )  _C  N )  x.  2 )  <_ 
( ( 4 ^ ( N  -  1 ) )  x.  2 ) ) )
327317, 326mpbird 224 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  -  1 )  _C  N )  <_  ( 4 ^ ( N  -  1 ) ) )
32860recni 9091 . . . . . . . 8  |-  ( log `  4 )  e.  CC
329 mulcom 9065 . . . . . . . 8  |-  ( ( ( log `  4
)  e.  CC  /\  ( N  -  1
)  e.  CC )  ->  ( ( log `  4 )  x.  ( N  -  1 ) )  =  ( ( N  -  1 )  x.  ( log `  4 ) ) )
330328, 109, 329sylancr 645 . . . . . . 7  |-  ( N  e.  NN  ->  (
( log `  4
)  x.  ( N  -  1 ) )  =  ( ( N  -  1 )  x.  ( log `  4
) ) )
331330fveq2d 5723 . . . . . 6  |-  ( N  e.  NN  ->  ( exp `  ( ( log `  4 )  x.  ( N  -  1 ) ) )  =  ( exp `  (
( N  -  1 )  x.  ( log `  4 ) ) ) )
332 reexplog 20477 . . . . . . 7  |-  ( ( 4  e.  RR+  /\  ( N  -  1 )  e.  ZZ )  -> 
( 4 ^ ( N  -  1 ) )  =  ( exp `  ( ( N  - 
1 )  x.  ( log `  4 ) ) ) )
33358, 276, 332sylancr 645 . . . . . 6  |-  ( N  e.  NN  ->  (
4 ^ ( N  -  1 ) )  =  ( exp `  (
( N  -  1 )  x.  ( log `  4 ) ) ) )
334331, 333eqtr4d 2470 . . . . 5  |-  ( N  e.  NN  ->  ( exp `  ( ( log `  4 )  x.  ( N  -  1 ) ) )  =  ( 4 ^ ( N  -  1 ) ) )
335327, 252, 3343brtr4d 4234 . . . 4  |-  ( N  e.  NN  ->  ( exp `  ( log `  (
( ( 2  x.  N )  -  1 )  _C  N ) ) )  <_  ( exp `  ( ( log `  4 )  x.  ( N  -  1 ) ) ) )
336 efle 12707 . . . . 5  |-  ( ( ( log `  (
( ( 2  x.  N )  -  1 )  _C  N ) )  e.  RR  /\  ( ( log `  4
)  x.  ( N  -  1 ) )  e.  RR )  -> 
( ( log `  (
( ( 2  x.  N )  -  1 )  _C  N ) )  <_  ( ( log `  4 )  x.  ( N  -  1 ) )  <->  ( exp `  ( log `  (
( ( 2  x.  N )  -  1 )  _C  N ) ) )  <_  ( exp `  ( ( log `  4 )  x.  ( N  -  1 ) ) ) ) )
33754, 63, 336syl2anc 643 . . . 4  |-  ( N  e.  NN  ->  (
( log `  (
( ( 2  x.  N )  -  1 )  _C  N ) )  <_  ( ( log `  4 )  x.  ( N  -  1 ) )  <->  ( exp `  ( log `  (
( ( 2  x.  N )  -  1 )  _C  N ) ) )  <_  ( exp `  ( ( log `  4 )  x.  ( N  -  1 ) ) ) ) )
338335, 337mpbird 224 . . 3  |-  ( N  e.  NN  ->  ( log `  ( ( ( 2  x.  N )  -  1 )  _C  N ) )  <_ 
( ( log `  4
)  x.  ( N  -  1 ) ) )
33954, 63, 11, 338leadd2dd 9630 . 2  |-  ( N  e.  NN  ->  (
( theta `  N )  +  ( log `  (
( ( 2  x.  N )  -  1 )  _C  N ) ) )  <_  (
( theta `  N )  +  ( ( log `  4 )  x.  ( N  -  1 ) ) ) )
3408, 55, 64, 258, 339letrd 9216 1  |-  ( N  e.  NN  ->  ( theta `  ( ( 2  x.  N )  - 
1 ) )  <_ 
( ( theta `  N
)  +  ( ( log `  4 )  x.  ( N  - 
1 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697    C_ wss 3312   ifcif 3731   class class class wbr 4204    e. cmpt 4258   ` cfv 5445  (class class class)co 6072   CCcc 8977   RRcr 8978   0cc0 8979   1c1 8980    + caddc 8982    x. cmul 8984    < clt 9109    <_ cle 9110    - cmin 9280    / cdiv 9666   NNcn 9989   2c2 10038   4c4 10040   NN0cn0 10210   ZZcz 10271   ZZ>=cuz 10477   RR+crp 10601   ...cfz 11032    seq cseq 11311   ^cexp 11370   !cfa 11554    _C cbc 11581   sum_csu 12467   expce 12652    || cdivides 12840   Primecprime 13067    pCnt cpc 13198   logclog 20440   thetaccht 20861
This theorem is referenced by:  chtub  20984
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057  ax-addf 9058  ax-mulf 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-of 6296  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-2o 6716  df-oadd 6719  df-er 6896  df-map 7011  df-pm 7012  df-ixp 7055  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-fi 7407  df-sup 7437  df-oi 7468  df-card 7815  df-cda 8037  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-4 10049  df-5 10050  df-6 10051  df-7 10052  df-8 10053  df-9 10054  df-10 10055  df-n0 10211  df-z 10272  df-dec 10372  df-uz 10478  df-q 10564  df-rp 10602  df-xneg 10699  df-xadd 10700  df-xmul 10701  df-ioo 10909  df-ioc 10910  df-ico 10911  df-icc 10912  df-fz 11033  df-fzo 11124  df-fl 11190  df-mod 11239  df-seq 11312  df-exp 11371  df-fac 11555  df-bc 11582  df-hash 11607  df-shft 11870  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-limsup 12253  df-clim 12270  df-rlim 12271  df-sum 12468  df-ef 12658  df-sin 12660  df-cos 12661  df-pi 12663  df-dvds 12841  df-gcd 12995  df-prm 13068  df-pc 13199  df-struct 13459  df-ndx 13460  df-slot 13461  df-base 13462  df-sets 13463  df-ress 13464  df-plusg 13530  df-mulr 13531  df-starv 13532  df-sca 13533  df-vsca 13534  df-tset 13536  df-ple 13537  df-ds 13539  df-unif 13540  df-hom 13541  df-cco 13542  df-rest 13638  df-topn 13639  df-topgen 13655  df-pt 13656  df-prds 13659  df-xrs 13714  df-0g 13715  df-gsum 13716  df-qtop 13721  df-imas 13722  df-xps 13724  df-mre 13799  df-mrc 13800  df-acs 13802  df-mnd 14678  df-submnd 14727  df-mulg 14803  df-cntz 15104  df-cmn 15402  df-psmet 16682  df-xmet 16683  df-met 16684  df-bl 16685  df-mopn 16686  df-fbas 16687  df-fg 16688  df-cnfld 16692  df-top 16951  df-bases 16953  df-topon 16954  df-topsp 16955  df-cld 17071  df-ntr 17072  df-cls 17073  df-nei 17150  df-lp 17188  df-perf 17189  df-cn 17279  df-cnp 17280  df-haus 17367  df-tx 17582  df-hmeo 17775  df-fil 17866  df-fm 17958  df-flim 17959  df-flf 17960  df-xms 18338  df-ms 18339  df-tms 18340  df-cncf 18896  df-limc 19741  df-dv 19742  df-log 20442  df-cht 20867
  Copyright terms: Public domain W3C validator