MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjadd Unicode version

Theorem cjadd 11621
Description: Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
cjadd  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  +  B )
)  =  ( ( * `  A )  +  ( * `  B ) ) )

Proof of Theorem cjadd
StepHypRef Expression
1 readd 11606 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  +  B )
)  =  ( ( Re `  A )  +  ( Re `  B ) ) )
2 imadd 11614 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  +  B )
)  =  ( ( Im `  A )  +  ( Im `  B ) ) )
32oveq2d 5836 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  ( A  +  B ) ) )  =  ( _i  x.  ( ( Im `  A )  +  ( Im `  B ) ) ) )
4 ax-icn 8792 . . . . . . 7  |-  _i  e.  CC
54a1i 12 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  _i  e.  CC )
6 imcl 11591 . . . . . . . 8  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
76adantr 453 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  RR )
87recnd 8857 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  CC )
9 imcl 11591 . . . . . . . 8  |-  ( B  e.  CC  ->  (
Im `  B )  e.  RR )
109adantl 454 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  RR )
1110recnd 8857 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  CC )
125, 8, 11adddid 8855 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( Im `  A
)  +  ( Im
`  B ) ) )  =  ( ( _i  x.  ( Im
`  A ) )  +  ( _i  x.  ( Im `  B ) ) ) )
133, 12eqtrd 2317 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  ( A  +  B ) ) )  =  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  (
Im `  B )
) ) )
141, 13oveq12d 5838 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  +  B
) )  -  (
_i  x.  ( Im `  ( A  +  B
) ) ) )  =  ( ( ( Re `  A )  +  ( Re `  B ) )  -  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  ( Im `  B ) ) ) ) )
15 recl 11590 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
1615adantr 453 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  RR )
1716recnd 8857 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  CC )
18 recl 11590 . . . . . 6  |-  ( B  e.  CC  ->  (
Re `  B )  e.  RR )
1918adantl 454 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  RR )
2019recnd 8857 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  CC )
21 mulcl 8817 . . . . 5  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
224, 8, 21sylancr 646 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  A )
)  e.  CC )
23 mulcl 8817 . . . . 5  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( _i  x.  (
Im `  B )
)  e.  CC )
244, 11, 23sylancr 646 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  B )
)  e.  CC )
2517, 20, 22, 24addsub4d 9200 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( Re `  B
) )  -  (
( _i  x.  (
Im `  A )
)  +  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) )  +  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )
2614, 25eqtrd 2317 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  +  B
) )  -  (
_i  x.  ( Im `  ( A  +  B
) ) ) )  =  ( ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) )  +  ( ( Re `  B
)  -  ( _i  x.  ( Im `  B ) ) ) ) )
27 addcl 8815 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
28 remim 11597 . . 3  |-  ( ( A  +  B )  e.  CC  ->  (
* `  ( A  +  B ) )  =  ( ( Re `  ( A  +  B
) )  -  (
_i  x.  ( Im `  ( A  +  B
) ) ) ) )
2927, 28syl 17 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  +  B )
)  =  ( ( Re `  ( A  +  B ) )  -  ( _i  x.  ( Im `  ( A  +  B ) ) ) ) )
30 remim 11597 . . 3  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
31 remim 11597 . . 3  |-  ( B  e.  CC  ->  (
* `  B )  =  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) )
3230, 31oveqan12d 5839 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  A )  +  ( * `  B ) )  =  ( ( ( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) )  +  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )
3326, 29, 323eqtr4d 2327 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  +  B )
)  =  ( ( * `  A )  +  ( * `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685   ` cfv 5222  (class class class)co 5820   CCcc 8731   RRcr 8732   _ici 8735    + caddc 8736    x. cmul 8738    - cmin 9033   *ccj 11576   Recre 11577   Imcim 11578
This theorem is referenced by:  cjsub  11629  cjreim  11640  cjaddi  11668  cjaddd  11700  sqabsadd  11762  sqreulem  11838  fsumcj  12263  efcj  12368  cnsrng  16403  atancj  20201  his7  21662
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-iota 6253  df-riota 6300  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-2 9800  df-cj 11579  df-re 11580  df-im 11581
  Copyright terms: Public domain W3C validator