MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjcl Unicode version

Theorem cjcl 11865
Description: The conjugate of a complex number is a complex number (closure law). (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
cjcl  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )

Proof of Theorem cjcl
StepHypRef Expression
1 cjf 11864 . 2  |-  * : CC --> CC
21ffvelrni 5828 1  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1721   ` cfv 5413   CCcc 8944   *ccj 11856
This theorem is referenced by:  crre  11874  cjcj  11900  ipcnval  11903  cjmulrcl  11904  addcj  11908  cjsub  11909  cjexp  11910  cjdiv  11924  cjcli  11929  cjcld  11956  absneg  12037  abscj  12039  sqabsadd  12042  sqabssub  12043  recval  12081  sqreulem  12118  cjcn2  12348  efcj  12649  cnsrng  16690  plycjlem  20147  coecj  20149  plyrecj  20150  aacjcl  20197  logcj  20454  argimlt0  20461  atancj  20703  cncph  22273  dipassr2  22301  his52  22542  his35  22543  brafnmul  23407  kbmul  23411  adjmul  23548  cnvbramul  23571  sigarac  27709  sigarid  27715
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-cj 11859
  Copyright terms: Public domain W3C validator