MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjreb Unicode version

Theorem cjreb 11602
Description: A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
cjreb  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( * `  A )  =  A ) )

Proof of Theorem cjreb
StepHypRef Expression
1 recl 11589 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
21recnd 8856 . . . . 5  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
3 ax-icn 8791 . . . . . 6  |-  _i  e.  CC
4 imcl 11590 . . . . . . 7  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
54recnd 8856 . . . . . 6  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
6 mulcl 8816 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
73, 5, 6sylancr 647 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
82, 7negsubd 9158 . . . 4  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  -u (
_i  x.  ( Im `  A ) ) )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
9 mulneg2 9212 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  -u (
Im `  A )
)  =  -u (
_i  x.  ( Im `  A ) ) )
103, 5, 9sylancr 647 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  -u ( Im
`  A ) )  =  -u ( _i  x.  ( Im `  A ) ) )
1110oveq2d 5835 . . . 4  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  ( _i  x.  -u ( Im `  A ) ) )  =  ( ( Re
`  A )  + 
-u ( _i  x.  ( Im `  A ) ) ) )
12 remim 11596 . . . 4  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
138, 11, 123eqtr4rd 2327 . . 3  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  +  ( _i  x.  -u (
Im `  A )
) ) )
14 replim 11595 . . 3  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
1513, 14eqeq12d 2298 . 2  |-  ( A  e.  CC  ->  (
( * `  A
)  =  A  <->  ( (
Re `  A )  +  ( _i  x.  -u ( Im `  A
) ) )  =  ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) ) ) )
165negcld 9139 . . . 4  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  CC )
17 mulcl 8816 . . . 4  |-  ( ( _i  e.  CC  /\  -u ( Im `  A
)  e.  CC )  ->  ( _i  x.  -u ( Im `  A
) )  e.  CC )
183, 16, 17sylancr 647 . . 3  |-  ( A  e.  CC  ->  (
_i  x.  -u ( Im
`  A ) )  e.  CC )
192, 18, 7addcand 9010 . 2  |-  ( A  e.  CC  ->  (
( ( Re `  A )  +  ( _i  x.  -u (
Im `  A )
) )  =  ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  <-> 
( _i  x.  -u (
Im `  A )
)  =  ( _i  x.  ( Im `  A ) ) ) )
20 eqcom 2286 . . . 4  |-  ( -u ( Im `  A )  =  ( Im `  A )  <->  ( Im `  A )  =  -u ( Im `  A ) )
21 eqneg 9475 . . . . 5  |-  ( ( Im `  A )  e.  CC  ->  (
( Im `  A
)  =  -u (
Im `  A )  <->  ( Im `  A )  =  0 ) )
225, 21syl 17 . . . 4  |-  ( A  e.  CC  ->  (
( Im `  A
)  =  -u (
Im `  A )  <->  ( Im `  A )  =  0 ) )
2320, 22syl5bb 250 . . 3  |-  ( A  e.  CC  ->  ( -u ( Im `  A
)  =  ( Im
`  A )  <->  ( Im `  A )  =  0 ) )
24 ine0 9210 . . . . . 6  |-  _i  =/=  0
253, 24pm3.2i 443 . . . . 5  |-  ( _i  e.  CC  /\  _i  =/=  0 )
2625a1i 12 . . . 4  |-  ( A  e.  CC  ->  (
_i  e.  CC  /\  _i  =/=  0 ) )
27 mulcan 9400 . . . 4  |-  ( (
-u ( Im `  A )  e.  CC  /\  ( Im `  A
)  e.  CC  /\  ( _i  e.  CC  /\  _i  =/=  0 ) )  ->  ( (
_i  x.  -u ( Im
`  A ) )  =  ( _i  x.  ( Im `  A ) )  <->  -u ( Im `  A )  =  ( Im `  A ) ) )
2816, 5, 26, 27syl3anc 1187 . . 3  |-  ( A  e.  CC  ->  (
( _i  x.  -u (
Im `  A )
)  =  ( _i  x.  ( Im `  A ) )  <->  -u ( Im
`  A )  =  ( Im `  A
) ) )
29 reim0b 11598 . . 3  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
3023, 28, 293bitr4d 278 . 2  |-  ( A  e.  CC  ->  (
( _i  x.  -u (
Im `  A )
)  =  ( _i  x.  ( Im `  A ) )  <->  A  e.  RR ) )
3115, 19, 303bitrrd 273 1  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( * `  A )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1628    e. wcel 1688    =/= wne 2447   ` cfv 5221  (class class class)co 5819   CCcc 8730   RRcr 8731   0cc0 8732   _ici 8734    + caddc 8735    x. cmul 8737    - cmin 9032   -ucneg 9033   *ccj 11575   Recre 11576   Imcim 11577
This theorem is referenced by:  cjre  11618  cjmulrcl  11623  cjrebi  11653  cjrebd  11681  hire  21665
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-iota 6252  df-riota 6299  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-2 9799  df-cj 11578  df-re 11579  df-im 11580
  Copyright terms: Public domain W3C validator