MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjreb Unicode version

Theorem cjreb 11855
Description: A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
cjreb  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( * `  A )  =  A ) )

Proof of Theorem cjreb
StepHypRef Expression
1 recl 11842 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
21recnd 9047 . . . . 5  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
3 ax-icn 8982 . . . . . 6  |-  _i  e.  CC
4 imcl 11843 . . . . . . 7  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
54recnd 9047 . . . . . 6  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
6 mulcl 9007 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
73, 5, 6sylancr 645 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
82, 7negsubd 9349 . . . 4  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  -u (
_i  x.  ( Im `  A ) ) )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
9 mulneg2 9403 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  -u (
Im `  A )
)  =  -u (
_i  x.  ( Im `  A ) ) )
103, 5, 9sylancr 645 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  -u ( Im
`  A ) )  =  -u ( _i  x.  ( Im `  A ) ) )
1110oveq2d 6036 . . . 4  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  ( _i  x.  -u ( Im `  A ) ) )  =  ( ( Re
`  A )  + 
-u ( _i  x.  ( Im `  A ) ) ) )
12 remim 11849 . . . 4  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
138, 11, 123eqtr4rd 2430 . . 3  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  +  ( _i  x.  -u (
Im `  A )
) ) )
14 replim 11848 . . 3  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
1513, 14eqeq12d 2401 . 2  |-  ( A  e.  CC  ->  (
( * `  A
)  =  A  <->  ( (
Re `  A )  +  ( _i  x.  -u ( Im `  A
) ) )  =  ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) ) ) )
165negcld 9330 . . . 4  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  CC )
17 mulcl 9007 . . . 4  |-  ( ( _i  e.  CC  /\  -u ( Im `  A
)  e.  CC )  ->  ( _i  x.  -u ( Im `  A
) )  e.  CC )
183, 16, 17sylancr 645 . . 3  |-  ( A  e.  CC  ->  (
_i  x.  -u ( Im
`  A ) )  e.  CC )
192, 18, 7addcand 9201 . 2  |-  ( A  e.  CC  ->  (
( ( Re `  A )  +  ( _i  x.  -u (
Im `  A )
) )  =  ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  <-> 
( _i  x.  -u (
Im `  A )
)  =  ( _i  x.  ( Im `  A ) ) ) )
20 eqcom 2389 . . . 4  |-  ( -u ( Im `  A )  =  ( Im `  A )  <->  ( Im `  A )  =  -u ( Im `  A ) )
215eqnegd 9667 . . . 4  |-  ( A  e.  CC  ->  (
( Im `  A
)  =  -u (
Im `  A )  <->  ( Im `  A )  =  0 ) )
2220, 21syl5bb 249 . . 3  |-  ( A  e.  CC  ->  ( -u ( Im `  A
)  =  ( Im
`  A )  <->  ( Im `  A )  =  0 ) )
23 ine0 9401 . . . . . 6  |-  _i  =/=  0
243, 23pm3.2i 442 . . . . 5  |-  ( _i  e.  CC  /\  _i  =/=  0 )
2524a1i 11 . . . 4  |-  ( A  e.  CC  ->  (
_i  e.  CC  /\  _i  =/=  0 ) )
26 mulcan 9591 . . . 4  |-  ( (
-u ( Im `  A )  e.  CC  /\  ( Im `  A
)  e.  CC  /\  ( _i  e.  CC  /\  _i  =/=  0 ) )  ->  ( (
_i  x.  -u ( Im
`  A ) )  =  ( _i  x.  ( Im `  A ) )  <->  -u ( Im `  A )  =  ( Im `  A ) ) )
2716, 5, 25, 26syl3anc 1184 . . 3  |-  ( A  e.  CC  ->  (
( _i  x.  -u (
Im `  A )
)  =  ( _i  x.  ( Im `  A ) )  <->  -u ( Im
`  A )  =  ( Im `  A
) ) )
28 reim0b 11851 . . 3  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
2922, 27, 283bitr4d 277 . 2  |-  ( A  e.  CC  ->  (
( _i  x.  -u (
Im `  A )
)  =  ( _i  x.  ( Im `  A ) )  <->  A  e.  RR ) )
3015, 19, 293bitrrd 272 1  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( * `  A )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2550   ` cfv 5394  (class class class)co 6020   CCcc 8921   RRcr 8922   0cc0 8923   _ici 8925    + caddc 8926    x. cmul 8928    - cmin 9223   -ucneg 9224   *ccj 11828   Recre 11829   Imcim 11830
This theorem is referenced by:  cjre  11871  cjmulrcl  11876  cjrebi  11906  cjrebd  11934  hire  22444
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-po 4444  df-so 4445  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-riota 6485  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-2 9990  df-cj 11831  df-re 11832  df-im 11833
  Copyright terms: Public domain W3C validator