MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjred Structured version   Unicode version

Theorem cjred 12023
Description: A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
crred.1  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
cjred  |-  ( ph  ->  ( * `  A
)  =  A )

Proof of Theorem cjred
StepHypRef Expression
1 crred.1 . 2  |-  ( ph  ->  A  e.  RR )
2 cjre 11936 . 2  |-  ( A  e.  RR  ->  (
* `  A )  =  A )
31, 2syl 16 1  |-  ( ph  ->  ( * `  A
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   ` cfv 5446   RRcr 8981   *ccj 11893
This theorem is referenced by:  absid  12093  abslem2  12135  sqreulem  12155  efcj  12686  mul4sqlem  13313  ipcau2  19183  pjthlem1  19330  dvcjbr  19827  dvfre  19829  plyrecj  20189  cosargd  20495  isosctrlem2  20655  dchrisum0re  21199  pjhthlem1  22885  eigposi  23331  eighmorth  23459  sigardiv  27818
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-2 10050  df-cj 11896  df-re 11897  df-im 11898
  Copyright terms: Public domain W3C validator