MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjval Unicode version

Theorem cjval 11517
Description: The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
cjval  |-  ( A  e.  CC  ->  (
* `  A )  =  ( iota_ x  e.  CC ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) ) )
Distinct variable group:    x, A

Proof of Theorem cjval
StepHypRef Expression
1 oveq1 5764 . . . . 5  |-  ( y  =  A  ->  (
y  +  x )  =  ( A  +  x ) )
21eleq1d 2322 . . . 4  |-  ( y  =  A  ->  (
( y  +  x
)  e.  RR  <->  ( A  +  x )  e.  RR ) )
3 oveq1 5764 . . . . . 6  |-  ( y  =  A  ->  (
y  -  x )  =  ( A  -  x ) )
43oveq2d 5773 . . . . 5  |-  ( y  =  A  ->  (
_i  x.  ( y  -  x ) )  =  ( _i  x.  ( A  -  x )
) )
54eleq1d 2322 . . . 4  |-  ( y  =  A  ->  (
( _i  x.  (
y  -  x ) )  e.  RR  <->  ( _i  x.  ( A  -  x
) )  e.  RR ) )
62, 5anbi12d 694 . . 3  |-  ( y  =  A  ->  (
( ( y  +  x )  e.  RR  /\  ( _i  x.  (
y  -  x ) )  e.  RR )  <-> 
( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) ) )
76riotabidv 6239 . 2  |-  ( y  =  A  ->  ( iota_ x  e.  CC ( ( y  +  x
)  e.  RR  /\  ( _i  x.  (
y  -  x ) )  e.  RR ) )  =  ( iota_ x  e.  CC ( ( A  +  x )  e.  RR  /\  (
_i  x.  ( A  -  x ) )  e.  RR ) ) )
8 df-cj 11514 . 2  |-  *  =  ( y  e.  CC  |->  ( iota_ x  e.  CC ( ( y  +  x )  e.  RR  /\  ( _i  x.  (
y  -  x ) )  e.  RR ) ) )
9 riotaex 6241 . 2  |-  ( iota_ x  e.  CC ( ( A  +  x )  e.  RR  /\  (
_i  x.  ( A  -  x ) )  e.  RR ) )  e. 
_V
107, 8, 9fvmpt 5501 1  |-  ( A  e.  CC  ->  (
* `  A )  =  ( iota_ x  e.  CC ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   ` cfv 4638  (class class class)co 5757   iota_crio 6228   CCcc 8668   RRcr 8669   _ici 8672    + caddc 8673    x. cmul 8675    - cmin 8970   *ccj 11511
This theorem is referenced by:  cjth  11518  remim  11532
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fv 4654  df-ov 5760  df-iota 6190  df-riota 6237  df-cj 11514
  Copyright terms: Public domain W3C validator