MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cla4imgf Unicode version

Theorem cla4imgf 2799
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
cla4imgf.1  |-  F/_ x A
cla4imgf.2  |-  F/ x ps
cla4imgf.3  |-  ( x  =  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
cla4imgf  |-  ( A  e.  V  ->  ( A. x ph  ->  ps ) )

Proof of Theorem cla4imgf
StepHypRef Expression
1 cla4imgf.2 . . 3  |-  F/ x ps
2 cla4imgf.1 . . 3  |-  F/_ x A
31, 2cla4imgft 2797 . 2  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A  e.  V  ->  ( A. x ph  ->  ps ) ) )
4 cla4imgf.3 . 2  |-  ( x  =  A  ->  ( ph  ->  ps ) )
53, 4mpg 1542 1  |-  ( A  e.  V  ->  ( A. x ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6   A.wal 1532   F/wnf 1539    = wceq 1619    e. wcel 1621   F/_wnfc 2372
This theorem is referenced by:  cla4imegf  2800
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-v 2729
  Copyright terms: Public domain W3C validator