MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  class2set Unicode version

Theorem class2set 4308
Description: Construct, from any class  A, a set equal to it when the class exists and equal to the empty set when the class is proper. This theorem shows that the constructed set always exists. (Contributed by NM, 16-Oct-2003.)
Assertion
Ref Expression
class2set  |-  { x  e.  A  |  A  e.  _V }  e.  _V
Distinct variable group:    x, A

Proof of Theorem class2set
StepHypRef Expression
1 rabexg 4294 . 2  |-  ( A  e.  _V  ->  { x  e.  A  |  A  e.  _V }  e.  _V )
2 simpl 444 . . . . 5  |-  ( ( -.  A  e.  _V  /\  x  e.  A )  ->  -.  A  e.  _V )
32nrexdv 2752 . . . 4  |-  ( -.  A  e.  _V  ->  -. 
E. x  e.  A  A  e.  _V )
4 rabn0 3590 . . . . 5  |-  ( { x  e.  A  |  A  e.  _V }  =/=  (/)  <->  E. x  e.  A  A  e.  _V )
54necon1bbii 2602 . . . 4  |-  ( -. 
E. x  e.  A  A  e.  _V  <->  { x  e.  A  |  A  e.  _V }  =  (/) )
63, 5sylib 189 . . 3  |-  ( -.  A  e.  _V  ->  { x  e.  A  |  A  e.  _V }  =  (/) )
7 0ex 4280 . . 3  |-  (/)  e.  _V
86, 7syl6eqel 2475 . 2  |-  ( -.  A  e.  _V  ->  { x  e.  A  |  A  e.  _V }  e.  _V )
91, 8pm2.61i 158 1  |-  { x  e.  A  |  A  e.  _V }  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1649    e. wcel 1717   E.wrex 2650   {crab 2653   _Vcvv 2899   (/)c0 3571
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-in 3270  df-ss 3277  df-nul 3572
  Copyright terms: Public domain W3C validator