MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldlp Unicode version

Theorem cldlp 16713
Description: A subset of a topological space is closed iff it contains all its limit points. Corollary 6.7 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
lpfval.1  |-  X  = 
U. J
Assertion
Ref Expression
cldlp  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  e.  (
Clsd `  J )  <->  ( ( limPt `  J ) `  S )  C_  S
) )

Proof of Theorem cldlp
StepHypRef Expression
1 lpfval.1 . . 3  |-  X  = 
U. J
21iscld3 16633 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  e.  (
Clsd `  J )  <->  ( ( cls `  J
) `  S )  =  S ) )
31clslp 16711 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( S  u.  ( ( limPt `  J
) `  S )
) )
43eqeq1d 2261 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( ( cls `  J ) `  S
)  =  S  <->  ( S  u.  ( ( limPt `  J
) `  S )
)  =  S ) )
5 ssequn2 3258 . . 3  |-  ( ( ( limPt `  J ) `  S )  C_  S  <->  ( S  u.  ( (
limPt `  J ) `  S ) )  =  S )
64, 5syl6bbr 256 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( ( cls `  J ) `  S
)  =  S  <->  ( ( limPt `  J ) `  S )  C_  S
) )
72, 6bitrd 246 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  e.  (
Clsd `  J )  <->  ( ( limPt `  J ) `  S )  C_  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    u. cun 3076    C_ wss 3078   U.cuni 3727   ` cfv 4592   Topctop 16463   Clsdccld 16585   clsccl 16587   limPtclp 16698
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-top 16468  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lp 16700
  Copyright terms: Public domain W3C validator