MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clelsb3 Unicode version

Theorem clelsb3 2532
Description: Substitution applied to an atomic wff (class version of elsb3 2178). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
clelsb3  |-  ( [ x  /  y ] y  e.  A  <->  x  e.  A )
Distinct variable group:    y, A
Allowed substitution hint:    A( x)

Proof of Theorem clelsb3
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfv 1629 . . 3  |-  F/ y  w  e.  A
21sbco2 2161 . 2  |-  ( [ x  /  y ] [ y  /  w ] w  e.  A  <->  [ x  /  w ]
w  e.  A )
3 nfv 1629 . . . 4  |-  F/ w  y  e.  A
4 eleq1 2490 . . . 4  |-  ( w  =  y  ->  (
w  e.  A  <->  y  e.  A ) )
53, 4sbie 2122 . . 3  |-  ( [ y  /  w ]
w  e.  A  <->  y  e.  A )
65sbbii 1665 . 2  |-  ( [ x  /  y ] [ y  /  w ] w  e.  A  <->  [ x  /  y ] y  e.  A )
7 nfv 1629 . . 3  |-  F/ w  x  e.  A
8 eleq1 2490 . . 3  |-  ( w  =  x  ->  (
w  e.  A  <->  x  e.  A ) )
97, 8sbie 2122 . 2  |-  ( [ x  /  w ]
w  e.  A  <->  x  e.  A )
102, 6, 93bitr3i 267 1  |-  ( [ x  /  y ] y  e.  A  <->  x  e.  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 177   [wsb 1658    e. wcel 1725
This theorem is referenced by:  hblem  2534  cbvreu  2917  sbcel1gv  3207  rmo3  3235  kmlem15  8028  iuninc  23994  measiuns  24554  ballotlemodife  24738
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-cleq 2423  df-clel 2426
  Copyright terms: Public domain W3C validator