MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clim Unicode version

Theorem clim 11963
Description: Express the predicate: The limit of complex number sequence  F is  A, or  F converges to  A. This means that for any real  x, no matter how small, there always exists an integer 
j such that the absolute difference of any later complex number in the sequence and the limit is less than  x. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
clim.1  |-  ( ph  ->  F  e.  V )
clim.3  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( F `
 k )  =  B )
Assertion
Ref Expression
clim  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
Distinct variable groups:    j, k, x, A    j, F, k, x    ph, j, k, x
Dummy variables  f 
y are mutually distinct and distinct from all other variables.
Allowed substitution hints:    B( x, j, k)    V( x, j, k)

Proof of Theorem clim
StepHypRef Expression
1 climrel 11961 . . . . 5  |-  Rel  ~~>
21brrelex2i 4730 . . . 4  |-  ( F  ~~>  A  ->  A  e.  _V )
32a1i 12 . . 3  |-  ( ph  ->  ( F  ~~>  A  ->  A  e.  _V )
)
4 elex 2798 . . . . 5  |-  ( A  e.  CC  ->  A  e.  _V )
54adantr 453 . . . 4  |-  ( ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) )  ->  A  e.  _V )
65a1i 12 . . 3  |-  ( ph  ->  ( ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) )  ->  A  e.  _V ) )
7 clim.1 . . . 4  |-  ( ph  ->  F  e.  V )
8 simpr 449 . . . . . . . 8  |-  ( ( f  =  F  /\  y  =  A )  ->  y  =  A )
98eleq1d 2351 . . . . . . 7  |-  ( ( f  =  F  /\  y  =  A )  ->  ( y  e.  CC  <->  A  e.  CC ) )
10 fveq1 5485 . . . . . . . . . . . . 13  |-  ( f  =  F  ->  (
f `  k )  =  ( F `  k ) )
1110adantr 453 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  y  =  A )  ->  ( f `  k
)  =  ( F `
 k ) )
1211eleq1d 2351 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( f `  k )  e.  CC  <->  ( F `  k )  e.  CC ) )
13 oveq12 5829 . . . . . . . . . . . . . 14  |-  ( ( ( f `  k
)  =  ( F `
 k )  /\  y  =  A )  ->  ( ( f `  k )  -  y
)  =  ( ( F `  k )  -  A ) )
1410, 13sylan 459 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( f `  k )  -  y
)  =  ( ( F `  k )  -  A ) )
1514fveq2d 5490 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  y  =  A )  ->  ( abs `  (
( f `  k
)  -  y ) )  =  ( abs `  ( ( F `  k )  -  A
) ) )
1615breq1d 4035 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( abs `  (
( f `  k
)  -  y ) )  <  x  <->  ( abs `  ( ( F `  k )  -  A
) )  <  x
) )
1712, 16anbi12d 693 . . . . . . . . . 10  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( ( f `
 k )  e.  CC  /\  ( abs `  ( ( f `  k )  -  y
) )  <  x
)  <->  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  x
) ) )
1817ralbidv 2565 . . . . . . . . 9  |-  ( ( f  =  F  /\  y  =  A )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x )  <->  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  x ) ) )
1918rexbidv 2566 . . . . . . . 8  |-  ( ( f  =  F  /\  y  =  A )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x ) ) )
2019ralbidv 2565 . . . . . . 7  |-  ( ( f  =  F  /\  y  =  A )  ->  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( f `  k )  e.  CC  /\  ( abs `  ( ( f `
 k )  -  y ) )  < 
x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) )
219, 20anbi12d 693 . . . . . 6  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( y  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x ) )  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) )
22 df-clim 11957 . . . . . 6  |-  ~~>  =  { <. f ,  y >.  |  ( y  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x ) ) }
2321, 22brabga 4279 . . . . 5  |-  ( ( F  e.  V  /\  A  e.  _V )  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) )
2423ex 425 . . . 4  |-  ( F  e.  V  ->  ( A  e.  _V  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) ) )
257, 24syl 17 . . 3  |-  ( ph  ->  ( A  e.  _V  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) ) )
263, 6, 25pm5.21ndd 345 . 2  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) )
27 eluzelz 10234 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  j
)  ->  k  e.  ZZ )
28 clim.3 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( F `
 k )  =  B )
2928eleq1d 2351 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( F `  k )  e.  CC  <->  B  e.  CC ) )
3028oveq1d 5835 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( F `  k )  -  A )  =  ( B  -  A
) )
3130fveq2d 5490 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( abs `  ( ( F `  k )  -  A
) )  =  ( abs `  ( B  -  A ) ) )
3231breq1d 4035 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( abs `  ( ( F `  k )  -  A ) )  <  x  <->  ( abs `  ( B  -  A
) )  <  x
) )
3329, 32anbi12d 693 . . . . . . 7  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  x )  <->  ( B  e.  CC  /\  ( abs `  ( B  -  A
) )  <  x
) ) )
3427, 33sylan2 462 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  x )  <->  ( B  e.  CC  /\  ( abs `  ( B  -  A
) )  <  x
) ) )
3534ralbidva 2561 . . . . 5  |-  ( ph  ->  ( A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x )  <->  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  x ) ) )
3635rexbidv 2566 . . . 4  |-  ( ph  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
x ) ) )
3736ralbidv 2565 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) )
3837anbi2d 686 . 2  |-  ( ph  ->  ( ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) )  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
3926, 38bitrd 246 1  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1624    e. wcel 1685   A.wral 2545   E.wrex 2546   _Vcvv 2790   class class class wbr 4025   ` cfv 5222  (class class class)co 5820   CCcc 8731    < clt 8863    - cmin 9033   ZZcz 10020   ZZ>=cuz 10226   RR+crp 10350   abscabs 11714    ~~> cli 11953
This theorem is referenced by:  climcl  11968  clim2  11973  climshftlem  12043  climsuse  27134
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4214  ax-un 4512  ax-cnex 8789  ax-resscn 8790
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-fv 5230  df-ov 5823  df-neg 9036  df-z 10021  df-uz 10227  df-clim 11957
  Copyright terms: Public domain W3C validator