Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clim1fr1 Structured version   Unicode version

Theorem clim1fr1 27815
Description: A class of sequences of fractions that converge to 1 (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
clim1fr1.1  |-  F  =  ( n  e.  NN  |->  ( ( ( A  x.  n )  +  B )  /  ( A  x.  n )
) )
clim1fr1.2  |-  ( ph  ->  A  e.  CC )
clim1fr1.3  |-  ( ph  ->  A  =/=  0 )
clim1fr1.4  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
clim1fr1  |-  ( ph  ->  F  ~~>  1 )
Distinct variable groups:    ph, n    A, n    B, n
Allowed substitution hint:    F( n)

Proof of Theorem clim1fr1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnuz 10559 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1z 10349 . . . 4  |-  1  e.  ZZ
32a1i 11 . . 3  |-  ( ph  ->  1  e.  ZZ )
4 nnex 10044 . . . . . 6  |-  NN  e.  _V
54mptex 6002 . . . . 5  |-  ( n  e.  NN  |->  1 )  e.  _V
65a1i 11 . . . 4  |-  ( ph  ->  ( n  e.  NN  |->  1 )  e.  _V )
73zcnd 10414 . . . 4  |-  ( ph  ->  1  e.  CC )
8 eqidd 2444 . . . . . 6  |-  ( k  e.  NN  ->  (
n  e.  NN  |->  1 )  =  ( n  e.  NN  |->  1 ) )
9 eqidd 2444 . . . . . 6  |-  ( ( k  e.  NN  /\  n  =  k )  ->  1  =  1 )
10 id 21 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  NN )
11 ax-1cn 9086 . . . . . . 7  |-  1  e.  CC
1211a1i 11 . . . . . 6  |-  ( k  e.  NN  ->  1  e.  CC )
138, 9, 10, 12fvmptd 5846 . . . . 5  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  1 ) `  k
)  =  1 )
1413adantl 454 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  1 ) `  k )  =  1 )
151, 3, 6, 7, 14climconst 12375 . . 3  |-  ( ph  ->  ( n  e.  NN  |->  1 )  ~~>  1 )
16 clim1fr1.1 . . . . 5  |-  F  =  ( n  e.  NN  |->  ( ( ( A  x.  n )  +  B )  /  ( A  x.  n )
) )
174mptex 6002 . . . . 5  |-  ( n  e.  NN  |->  ( ( ( A  x.  n
)  +  B )  /  ( A  x.  n ) ) )  e.  _V
1816, 17eqeltri 2513 . . . 4  |-  F  e. 
_V
1918a1i 11 . . 3  |-  ( ph  ->  F  e.  _V )
20 clim1fr1.4 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
2120adantr 453 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  B  e.  CC )
22 clim1fr1.2 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
2322adantr 453 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  A  e.  CC )
24 nncn 10046 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  CC )
2524adantl 454 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  CC )
26 clim1fr1.3 . . . . . . 7  |-  ( ph  ->  A  =/=  0 )
2726adantr 453 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  A  =/=  0 )
28 nnne0 10070 . . . . . . 7  |-  ( n  e.  NN  ->  n  =/=  0 )
2928adantl 454 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  n  =/=  0 )
3021, 23, 25, 27, 29divdiv1d 9859 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( B  /  A )  /  n )  =  ( B  /  ( A  x.  n )
) )
3130mpteq2dva 4326 . . . 4  |-  ( ph  ->  ( n  e.  NN  |->  ( ( B  /  A )  /  n
) )  =  ( n  e.  NN  |->  ( B  /  ( A  x.  n ) ) ) )
3220, 22, 26divcld 9828 . . . . 5  |-  ( ph  ->  ( B  /  A
)  e.  CC )
33 divcnv 12671 . . . . 5  |-  ( ( B  /  A )  e.  CC  ->  (
n  e.  NN  |->  ( ( B  /  A
)  /  n ) )  ~~>  0 )
3432, 33syl 16 . . . 4  |-  ( ph  ->  ( n  e.  NN  |->  ( ( B  /  A )  /  n
) )  ~~>  0 )
3531, 34eqbrtrrd 4265 . . 3  |-  ( ph  ->  ( n  e.  NN  |->  ( B  /  ( A  x.  n )
) )  ~~>  0 )
36 eqid 2443 . . . . . 6  |-  ( n  e.  NN  |->  1 )  =  ( n  e.  NN  |->  1 )
3711a1i 11 . . . . . 6  |-  ( n  e.  NN  ->  1  e.  CC )
3836, 37fmpti 5928 . . . . 5  |-  ( n  e.  NN  |->  1 ) : NN --> CC
3938a1i 11 . . . 4  |-  ( ph  ->  ( n  e.  NN  |->  1 ) : NN --> CC )
4039ffvelrnda 5906 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  1 ) `  k )  e.  CC )
4123, 25mulcld 9146 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( A  x.  n )  e.  CC )
4223, 25, 27, 29mulne0d 9712 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( A  x.  n )  =/=  0 )
4321, 41, 42divcld 9828 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( B  /  ( A  x.  n ) )  e.  CC )
44 eqid 2443 . . . . 5  |-  ( n  e.  NN  |->  ( B  /  ( A  x.  n ) ) )  =  ( n  e.  NN  |->  ( B  / 
( A  x.  n
) ) )
4543, 44fmptd 5929 . . . 4  |-  ( ph  ->  ( n  e.  NN  |->  ( B  /  ( A  x.  n )
) ) : NN --> CC )
4645ffvelrnda 5906 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( B  /  ( A  x.  n ) ) ) `  k )  e.  CC )
4716a1i 11 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  F  =  ( n  e.  NN  |->  ( ( ( A  x.  n )  +  B )  /  ( A  x.  n )
) ) )
48 oveq2 6125 . . . . . . . 8  |-  ( n  =  k  ->  ( A  x.  n )  =  ( A  x.  k ) )
4948oveq1d 6132 . . . . . . 7  |-  ( n  =  k  ->  (
( A  x.  n
)  +  B )  =  ( ( A  x.  k )  +  B ) )
5049, 48oveq12d 6135 . . . . . 6  |-  ( n  =  k  ->  (
( ( A  x.  n )  +  B
)  /  ( A  x.  n ) )  =  ( ( ( A  x.  k )  +  B )  / 
( A  x.  k
) ) )
5150adantl 454 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  =  k )  -> 
( ( ( A  x.  n )  +  B )  /  ( A  x.  n )
)  =  ( ( ( A  x.  k
)  +  B )  /  ( A  x.  k ) ) )
52 simpr 449 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
5322adantr 453 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  CC )
5452nncnd 10054 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  CC )
5553, 54mulcld 9146 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( A  x.  k )  e.  CC )
5620adantr 453 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  B  e.  CC )
5755, 56addcld 9145 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( A  x.  k )  +  B )  e.  CC )
5826adantr 453 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  A  =/=  0 )
5952nnne0d 10082 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  k  =/=  0 )
6053, 54, 58, 59mulne0d 9712 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( A  x.  k )  =/=  0 )
6157, 55, 60divcld 9828 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( A  x.  k
)  +  B )  /  ( A  x.  k ) )  e.  CC )
6247, 51, 52, 61fvmptd 5846 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( ( ( A  x.  k )  +  B )  /  ( A  x.  k )
) )
6355, 56, 55, 60divdird 9866 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( A  x.  k
)  +  B )  /  ( A  x.  k ) )  =  ( ( ( A  x.  k )  / 
( A  x.  k
) )  +  ( B  /  ( A  x.  k ) ) ) )
6455, 60dividd 9826 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( A  x.  k )  /  ( A  x.  k ) )  =  1 )
6564oveq1d 6132 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( A  x.  k
)  /  ( A  x.  k ) )  +  ( B  / 
( A  x.  k
) ) )  =  ( 1  +  ( B  /  ( A  x.  k ) ) ) )
6663, 65eqtrd 2475 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( A  x.  k
)  +  B )  /  ( A  x.  k ) )  =  ( 1  +  ( B  /  ( A  x.  k ) ) ) )
6714eqcomd 2448 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  1  =  ( ( n  e.  NN  |->  1 ) `  k ) )
68 eqidd 2444 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( n  e.  NN  |->  ( B  /  ( A  x.  n ) ) )  =  ( n  e.  NN  |->  ( B  / 
( A  x.  n
) ) ) )
69 simpr 449 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  =  k )  ->  n  =  k )
7069oveq2d 6133 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  =  k )  -> 
( A  x.  n
)  =  ( A  x.  k ) )
7170oveq2d 6133 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  =  k )  -> 
( B  /  ( A  x.  n )
)  =  ( B  /  ( A  x.  k ) ) )
7256, 55, 60divcld 9828 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( B  /  ( A  x.  k ) )  e.  CC )
7368, 71, 52, 72fvmptd 5846 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( B  /  ( A  x.  n ) ) ) `  k )  =  ( B  / 
( A  x.  k
) ) )
7473eqcomd 2448 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( B  /  ( A  x.  k ) )  =  ( ( n  e.  NN  |->  ( B  / 
( A  x.  n
) ) ) `  k ) )
7567, 74oveq12d 6135 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  +  ( B  / 
( A  x.  k
) ) )  =  ( ( ( n  e.  NN  |->  1 ) `
 k )  +  ( ( n  e.  NN  |->  ( B  / 
( A  x.  n
) ) ) `  k ) ) )
7662, 66, 753eqtrd 2479 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( ( ( n  e.  NN  |->  1 ) `
 k )  +  ( ( n  e.  NN  |->  ( B  / 
( A  x.  n
) ) ) `  k ) ) )
771, 3, 15, 19, 35, 40, 46, 76climadd 12463 . 2  |-  ( ph  ->  F  ~~>  ( 1  +  0 ) )
7811addid1i 9291 . 2  |-  ( 1  +  0 )  =  1
7977, 78syl6breq 4282 1  |-  ( ph  ->  F  ~~>  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1654    e. wcel 1728    =/= wne 2606   _Vcvv 2965   class class class wbr 4243    e. cmpt 4297   -->wf 5485   ` cfv 5489  (class class class)co 6117   CCcc 9026   0cc0 9028   1c1 9029    + caddc 9031    x. cmul 9033    / cdiv 9715   NNcn 10038   ZZcz 10320    ~~> cli 12316
This theorem is referenced by:  wallispilem5  27906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-rep 4351  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736  ax-cnex 9084  ax-resscn 9085  ax-1cn 9086  ax-icn 9087  ax-addcl 9088  ax-addrcl 9089  ax-mulcl 9090  ax-mulrcl 9091  ax-mulcom 9092  ax-addass 9093  ax-mulass 9094  ax-distr 9095  ax-i2m1 9096  ax-1ne0 9097  ax-1rid 9098  ax-rnegex 9099  ax-rrecex 9100  ax-cnre 9101  ax-pre-lttri 9102  ax-pre-lttrn 9103  ax-pre-ltadd 9104  ax-pre-mulgt0 9105  ax-pre-sup 9106
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2717  df-rex 2718  df-reu 2719  df-rmo 2720  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-pss 3325  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-tp 3851  df-op 3852  df-uni 4045  df-iun 4124  df-br 4244  df-opab 4298  df-mpt 4299  df-tr 4334  df-eprel 4529  df-id 4533  df-po 4538  df-so 4539  df-fr 4576  df-we 4578  df-ord 4619  df-on 4620  df-lim 4621  df-suc 4622  df-om 4881  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-ov 6120  df-oprab 6121  df-mpt2 6122  df-2nd 6386  df-riota 6585  df-recs 6669  df-rdg 6704  df-er 6941  df-pm 7057  df-en 7146  df-dom 7147  df-sdom 7148  df-sup 7482  df-pnf 9160  df-mnf 9161  df-xr 9162  df-ltxr 9163  df-le 9164  df-sub 9331  df-neg 9332  df-div 9716  df-nn 10039  df-2 10096  df-3 10097  df-n0 10260  df-z 10321  df-uz 10527  df-rp 10651  df-fl 11240  df-seq 11362  df-exp 11421  df-cj 11942  df-re 11943  df-im 11944  df-sqr 12078  df-abs 12079  df-clim 12320  df-rlim 12321
  Copyright terms: Public domain W3C validator