MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climabs0 Unicode version

Theorem climabs0 12306
Description: Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climabs0.1  |-  Z  =  ( ZZ>= `  M )
climabs0.2  |-  ( ph  ->  M  e.  ZZ )
climabs0.3  |-  ( ph  ->  F  e.  V )
climabs0.4  |-  ( ph  ->  G  e.  W )
climabs0.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
climabs0.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k )
) )
Assertion
Ref Expression
climabs0  |-  ( ph  ->  ( F  ~~>  0  <->  G  ~~>  0 ) )
Distinct variable groups:    k, F    k, G    ph, k    k, Z
Allowed substitution hints:    M( k)    V( k)    W( k)

Proof of Theorem climabs0
Dummy variables  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climabs0.1 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
21uztrn2 10435 . . . . . . 7  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
3 climabs0.5 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
4 absidm 12054 . . . . . . . . 9  |-  ( ( F `  k )  e.  CC  ->  ( abs `  ( abs `  ( F `  k )
) )  =  ( abs `  ( F `
 k ) ) )
53, 4syl 16 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( abs `  ( F `  k )
) )  =  ( abs `  ( F `
 k ) ) )
65breq1d 4163 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  (
( abs `  ( abs `  ( F `  k ) ) )  <  x  <->  ( abs `  ( F `  k
) )  <  x
) )
72, 6sylan2 461 . . . . . 6  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( abs `  ( abs `  ( F `  k ) ) )  <  x  <->  ( abs `  ( F `  k
) )  <  x
) )
87anassrs 630 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( abs `  ( F `  k )
) )  <  x  <->  ( abs `  ( F `
 k ) )  <  x ) )
98ralbidva 2665 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( abs `  ( F `  k
) ) )  < 
x  <->  A. k  e.  (
ZZ>= `  j ) ( abs `  ( F `
 k ) )  <  x ) )
109rexbidva 2666 . . 3  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( abs `  ( F `  k ) ) )  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  x )
)
1110ralbidv 2669 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( abs `  ( F `  k
) ) )  < 
x  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  x
) )
12 climabs0.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
13 climabs0.4 . . 3  |-  ( ph  ->  G  e.  W )
14 climabs0.6 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k )
) )
153abscld 12165 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  e.  RR )
1615recnd 9047 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  e.  CC )
171, 12, 13, 14, 16clim0c 12228 . 2  |-  ( ph  ->  ( G  ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( abs `  ( F `  k ) ) )  <  x ) )
18 climabs0.3 . . 3  |-  ( ph  ->  F  e.  V )
19 eqidd 2388 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
201, 12, 18, 19, 3clim0c 12228 . 2  |-  ( ph  ->  ( F  ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  x )
)
2111, 17, 203bitr4rd 278 1  |-  ( ph  ->  ( F  ~~>  0  <->  G  ~~>  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2649   E.wrex 2650   class class class wbr 4153   ` cfv 5394   CCcc 8921   0cc0 8923    < clt 9053   ZZcz 10214   ZZ>=cuz 10420   RR+crp 10544   abscabs 11966    ~~> cli 12205
This theorem is referenced by:  expcnv  12570  explecnv  12571  plyeq0lem  19996  lgamcvg2  24618
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-sup 7381  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-n0 10154  df-z 10215  df-uz 10421  df-rp 10545  df-seq 11251  df-exp 11310  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-clim 12209
  Copyright terms: Public domain W3C validator