MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcn1 Unicode version

Theorem climcn1 12061
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climcn1.1  |-  Z  =  ( ZZ>= `  M )
climcn1.2  |-  ( ph  ->  M  e.  ZZ )
climcn1.3  |-  ( ph  ->  A  e.  B )
climcn1.4  |-  ( (
ph  /\  z  e.  B )  ->  ( F `  z )  e.  CC )
climcn1.5  |-  ( ph  ->  G  ~~>  A )
climcn1.6  |-  ( ph  ->  H  e.  W )
climcn1.7  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  B  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
climcn1.8  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  B )
climcn1.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( F `  ( G `  k ) ) )
Assertion
Ref Expression
climcn1  |-  ( ph  ->  H  ~~>  ( F `  A ) )
Distinct variable groups:    x, k,
y, z, A    B, k, z    k, G, y, z    k, H, x   
k, F, x, y, z    ph, k, x, y, z    k, Z, y
Allowed substitution hints:    B( x, y)    G( x)    H( y, z)    M( x, y, z, k)    W( x, y, z, k)    Z( x, z)

Proof of Theorem climcn1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climcn1.7 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  B  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
2 climcn1.1 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
3 climcn1.2 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
43adantr 451 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  M  e.  ZZ )
5 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  RR+ )
6 eqidd 2285 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  ( G `  k )  =  ( G `  k ) )
7 climcn1.5 . . . . . . . . 9  |-  ( ph  ->  G  ~~>  A )
87adantr 451 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  G  ~~>  A )
92, 4, 5, 6, 8climi2 11981 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y )
102uztrn2 10241 . . . . . . . . . . . 12  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
11 climcn1.8 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  B )
1211adantlr 695 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  ( G `  k )  e.  B )
13 oveq1 5827 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( G `  k )  ->  (
z  -  A )  =  ( ( G `
 k )  -  A ) )
1413fveq2d 5490 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( G `  k )  ->  ( abs `  ( z  -  A ) )  =  ( abs `  (
( G `  k
)  -  A ) ) )
1514breq1d 4034 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( G `  k )  ->  (
( abs `  (
z  -  A ) )  <  y  <->  ( abs `  ( ( G `  k )  -  A
) )  <  y
) )
16 fveq2 5486 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( G `  k )  ->  ( F `  z )  =  ( F `  ( G `  k ) ) )
1716oveq1d 5835 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( G `  k )  ->  (
( F `  z
)  -  ( F `
 A ) )  =  ( ( F `
 ( G `  k ) )  -  ( F `  A ) ) )
1817fveq2d 5490 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( G `  k )  ->  ( abs `  ( ( F `
 z )  -  ( F `  A ) ) )  =  ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) ) )
1918breq1d 4034 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( G `  k )  ->  (
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x  <->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2015, 19imbi12d 311 . . . . . . . . . . . . . . 15  |-  ( z  =  ( G `  k )  ->  (
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  <-> 
( ( abs `  (
( G `  k
)  -  A ) )  <  y  -> 
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) ) )
2120rspcva 2883 . . . . . . . . . . . . . 14  |-  ( ( ( G `  k
)  e.  B  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  ( ( abs `  ( ( G `
 k )  -  A ) )  < 
y  ->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2212, 21sylan 457 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  ( ( abs `  ( ( G `
 k )  -  A ) )  < 
y  ->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2322an32s 779 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  k  e.  Z )  ->  (
( abs `  (
( G `  k
)  -  A ) )  <  y  -> 
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
2410, 23sylan2 460 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( abs `  (
( G `  k
)  -  A ) )  <  y  -> 
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
2524anassrs 629 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( ( G `
 k )  -  A ) )  < 
y  ->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2625ralimdva 2622 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( G `  k )  -  A ) )  <  y  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
2726reximdva 2656 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( G `  k )  -  A
) )  <  y  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) )
2827ex 423 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( A. z  e.  B  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) ) )
299, 28mpid 37 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( A. z  e.  B  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) )
3029rexlimdva 2668 . . . . 5  |-  ( ph  ->  ( E. y  e.  RR+  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) )
3130adantr 451 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. y  e.  RR+  A. z  e.  B  ( ( abs `  ( z  -  A ) )  < 
y  ->  ( abs `  ( ( F `  z )  -  ( F `  A )
) )  <  x
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
321, 31mpd 14 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x )
3332ralrimiva 2627 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x )
34 climcn1.6 . . 3  |-  ( ph  ->  H  e.  W )
35 climcn1.9 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( F `  ( G `  k ) ) )
36 climcn1.3 . . . 4  |-  ( ph  ->  A  e.  B )
37 climcn1.4 . . . . 5  |-  ( (
ph  /\  z  e.  B )  ->  ( F `  z )  e.  CC )
3837ralrimiva 2627 . . . 4  |-  ( ph  ->  A. z  e.  B  ( F `  z )  e.  CC )
39 fveq2 5486 . . . . . 6  |-  ( z  =  A  ->  ( F `  z )  =  ( F `  A ) )
4039eleq1d 2350 . . . . 5  |-  ( z  =  A  ->  (
( F `  z
)  e.  CC  <->  ( F `  A )  e.  CC ) )
4140rspcv 2881 . . . 4  |-  ( A  e.  B  ->  ( A. z  e.  B  ( F `  z )  e.  CC  ->  ( F `  A )  e.  CC ) )
4236, 38, 41sylc 56 . . 3  |-  ( ph  ->  ( F `  A
)  e.  CC )
4338adantr 451 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  A. z  e.  B  ( F `  z )  e.  CC )
4416eleq1d 2350 . . . . 5  |-  ( z  =  ( G `  k )  ->  (
( F `  z
)  e.  CC  <->  ( F `  ( G `  k
) )  e.  CC ) )
4544rspcv 2881 . . . 4  |-  ( ( G `  k )  e.  B  ->  ( A. z  e.  B  ( F `  z )  e.  CC  ->  ( F `  ( G `  k ) )  e.  CC ) )
4611, 43, 45sylc 56 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  ( G `  k ) )  e.  CC )
472, 3, 34, 35, 42, 46clim2c 11975 . 2  |-  ( ph  ->  ( H  ~~>  ( F `
 A )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
4833, 47mpbird 223 1  |-  ( ph  ->  H  ~~>  ( F `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1685   A.wral 2544   E.wrex 2545   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   CCcc 8731    < clt 8863    - cmin 9033   ZZcz 10020   ZZ>=cuz 10226   RR+crp 10350   abscabs 11715    ~~> cli 11954
This theorem is referenced by:  climcn1lem  12072  climcncf  18400  climrec  27140
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-pre-lttri 8807  ax-pre-lttrn 8808
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-neg 9036  df-z 10021  df-uz 10227  df-clim 11958
  Copyright terms: Public domain W3C validator