MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcn1lem Unicode version

Theorem climcn1lem 12323
Description: The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
climcn1lem.1  |-  Z  =  ( ZZ>= `  M )
climcn1lem.2  |-  ( ph  ->  F  ~~>  A )
climcn1lem.4  |-  ( ph  ->  G  e.  W )
climcn1lem.5  |-  ( ph  ->  M  e.  ZZ )
climcn1lem.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
climcn1lem.7  |-  H : CC
--> CC
climcn1lem.8  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( H `  z
)  -  ( H `
 A ) ) )  <  x ) )
climcn1lem.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( H `  ( F `  k ) ) )
Assertion
Ref Expression
climcn1lem  |-  ( ph  ->  G  ~~>  ( H `  A ) )
Distinct variable groups:    x, k,
y, z, A    k, F, y, z    k, G, x    ph, k, x, y, z    k, Z, y   
k, H, x, y, z    k, M
Allowed substitution hints:    F( x)    G( y, z)    M( x, y, z)    W( x, y, z, k)    Z( x, z)

Proof of Theorem climcn1lem
StepHypRef Expression
1 climcn1lem.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climcn1lem.5 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climcn1lem.2 . . 3  |-  ( ph  ->  F  ~~>  A )
4 climcl 12220 . . 3  |-  ( F  ~~>  A  ->  A  e.  CC )
53, 4syl 16 . 2  |-  ( ph  ->  A  e.  CC )
6 climcn1lem.7 . . . 4  |-  H : CC
--> CC
76ffvelrni 5808 . . 3  |-  ( z  e.  CC  ->  ( H `  z )  e.  CC )
87adantl 453 . 2  |-  ( (
ph  /\  z  e.  CC )  ->  ( H `
 z )  e.  CC )
9 climcn1lem.4 . 2  |-  ( ph  ->  G  e.  W )
10 climcn1lem.8 . . 3  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( H `  z
)  -  ( H `
 A ) ) )  <  x ) )
115, 10sylan 458 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( H `  z
)  -  ( H `
 A ) ) )  <  x ) )
12 climcn1lem.6 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
13 climcn1lem.9 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( H `  ( F `  k ) ) )
141, 2, 5, 8, 3, 9, 11, 12, 13climcn1 12312 1  |-  ( ph  ->  G  ~~>  ( H `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2649   E.wrex 2650   class class class wbr 4153   -->wf 5390   ` cfv 5394  (class class class)co 6020   CCcc 8921    < clt 9053    - cmin 9223   ZZcz 10214   ZZ>=cuz 10420   RR+crp 10544   abscabs 11966    ~~> cli 12205
This theorem is referenced by:  climabs  12324  climcj  12325  climre  12326  climim  12327  sinccvglem  24888
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-pre-lttri 8997  ax-pre-lttrn 8998
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-po 4444  df-so 4445  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-neg 9226  df-z 10215  df-uz 10421  df-clim 12209
  Copyright terms: Public domain W3C validator