MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcn2 Unicode version

Theorem climcn2 12062
Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climcn2.1  |-  Z  =  ( ZZ>= `  M )
climcn2.2  |-  ( ph  ->  M  e.  ZZ )
climcn2.3a  |-  ( ph  ->  A  e.  C )
climcn2.3b  |-  ( ph  ->  B  e.  D )
climcn2.4  |-  ( (
ph  /\  ( u  e.  C  /\  v  e.  D ) )  -> 
( u F v )  e.  CC )
climcn2.5a  |-  ( ph  ->  G  ~~>  A )
climcn2.5b  |-  ( ph  ->  H  ~~>  B )
climcn2.6  |-  ( ph  ->  K  e.  W )
climcn2.7  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  C  A. v  e.  D  ( ( ( abs `  ( u  -  A
) )  <  y  /\  ( abs `  (
v  -  B ) )  <  z )  ->  ( abs `  (
( u F v )  -  ( A F B ) ) )  <  x ) )
climcn2.8a  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  C )
climcn2.8b  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  e.  D )
climcn2.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( K `  k )  =  ( ( G `
 k ) F ( H `  k
) ) )
Assertion
Ref Expression
climcn2  |-  ( ph  ->  K  ~~>  ( A F B ) )
Distinct variable groups:    u, k,
v, C    D, k, u, v    y, k, z, H, v    x, k,
ph, u, y, z, v    A, k, u, v, x, y, z    k, G, u, v, y, z   
k, K, x    k, Z, y, z    B, k, u, v, x, y, z    k, F, u, v, x, y, z
Allowed substitution hints:    C( x, y, z)    D( x, y, z)    G( x)    H( x, u)    K( y, z, v, u)    M( x, y, z, v, u, k)    W( x, y, z, v, u, k)    Z( x, v, u)

Proof of Theorem climcn2
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climcn2.7 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  C  A. v  e.  D  ( ( ( abs `  ( u  -  A
) )  <  y  /\  ( abs `  (
v  -  B ) )  <  z )  ->  ( abs `  (
( u F v )  -  ( A F B ) ) )  <  x ) )
2 climcn2.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
3 climcn2.2 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
43adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  M  e.  ZZ )
5 simprl 732 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  y  e.  RR+ )
6 eqidd 2285 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  k  e.  Z )  ->  ( G `  k
)  =  ( G `
 k ) )
7 climcn2.5a . . . . . . . . . 10  |-  ( ph  ->  G  ~~>  A )
87adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  G  ~~>  A )
92, 4, 5, 6, 8climi2 11981 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y )
10 simprr 733 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  z  e.  RR+ )
11 eqidd 2285 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  RR+  /\  z  e.  RR+ ) )  /\  k  e.  Z )  ->  ( H `  k
)  =  ( H `
 k ) )
12 climcn2.5b . . . . . . . . . 10  |-  ( ph  ->  H  ~~>  B )
1312adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  H  ~~>  B )
142, 4, 10, 11, 13climi2 11981 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( H `  k
)  -  B ) )  <  z )
152rexanuz2 11829 . . . . . . . 8  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( abs `  ( ( G `  k )  -  A ) )  <  y  /\  ( abs `  ( ( H `
 k )  -  B ) )  < 
z )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( G `  k )  -  A
) )  <  y  /\  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( H `  k )  -  B ) )  <  z ) )
169, 14, 15sylanbrc 645 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( abs `  (
( G `  k
)  -  A ) )  <  y  /\  ( abs `  ( ( H `  k )  -  B ) )  <  z ) )
172uztrn2 10241 . . . . . . . . . . . . 13  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
18 climcn2.8a . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  C )
19 climcn2.8b . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  e.  D )
20 oveq1 5827 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  ( G `  k )  ->  (
u  -  A )  =  ( ( G `
 k )  -  A ) )
2120fveq2d 5490 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  ( G `  k )  ->  ( abs `  ( u  -  A ) )  =  ( abs `  (
( G `  k
)  -  A ) ) )
2221breq1d 4034 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  ( G `  k )  ->  (
( abs `  (
u  -  A ) )  <  y  <->  ( abs `  ( ( G `  k )  -  A
) )  <  y
) )
2322anbi1d 685 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  ( G `  k )  ->  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  <->  ( ( abs `  ( ( G `
 k )  -  A ) )  < 
y  /\  ( abs `  ( v  -  B
) )  <  z
) ) )
24 oveq1 5827 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  ( G `  k )  ->  (
u F v )  =  ( ( G `
 k ) F v ) )
2524oveq1d 5835 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  ( G `  k )  ->  (
( u F v )  -  ( A F B ) )  =  ( ( ( G `  k ) F v )  -  ( A F B ) ) )
2625fveq2d 5490 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  ( G `  k )  ->  ( abs `  ( ( u F v )  -  ( A F B ) ) )  =  ( abs `  ( ( ( G `  k
) F v )  -  ( A F B ) ) ) )
2726breq1d 4034 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  ( G `  k )  ->  (
( abs `  (
( u F v )  -  ( A F B ) ) )  <  x  <->  ( abs `  ( ( ( G `
 k ) F v )  -  ( A F B ) ) )  <  x ) )
2823, 27imbi12d 311 . . . . . . . . . . . . . . . . 17  |-  ( u  =  ( G `  k )  ->  (
( ( ( abs `  ( u  -  A
) )  <  y  /\  ( abs `  (
v  -  B ) )  <  z )  ->  ( abs `  (
( u F v )  -  ( A F B ) ) )  <  x )  <-> 
( ( ( abs `  ( ( G `  k )  -  A
) )  <  y  /\  ( abs `  (
v  -  B ) )  <  z )  ->  ( abs `  (
( ( G `  k ) F v )  -  ( A F B ) ) )  <  x ) ) )
29 oveq1 5827 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  ( H `  k )  ->  (
v  -  B )  =  ( ( H `
 k )  -  B ) )
3029fveq2d 5490 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  ( H `  k )  ->  ( abs `  ( v  -  B ) )  =  ( abs `  (
( H `  k
)  -  B ) ) )
3130breq1d 4034 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  ( H `  k )  ->  (
( abs `  (
v  -  B ) )  <  z  <->  ( abs `  ( ( H `  k )  -  B
) )  <  z
) )
3231anbi2d 684 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  ( H `  k )  ->  (
( ( abs `  (
( G `  k
)  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  <->  ( ( abs `  ( ( G `
 k )  -  A ) )  < 
y  /\  ( abs `  ( ( H `  k )  -  B
) )  <  z
) ) )
33 oveq2 5828 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  ( H `  k )  ->  (
( G `  k
) F v )  =  ( ( G `
 k ) F ( H `  k
) ) )
3433oveq1d 5835 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  ( H `  k )  ->  (
( ( G `  k ) F v )  -  ( A F B ) )  =  ( ( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )
3534fveq2d 5490 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  ( H `  k )  ->  ( abs `  ( ( ( G `  k ) F v )  -  ( A F B ) ) )  =  ( abs `  ( ( ( G `  k
) F ( H `
 k ) )  -  ( A F B ) ) ) )
3635breq1d 4034 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  ( H `  k )  ->  (
( abs `  (
( ( G `  k ) F v )  -  ( A F B ) ) )  <  x  <->  ( abs `  ( ( ( G `
 k ) F ( H `  k
) )  -  ( A F B ) ) )  <  x ) )
3732, 36imbi12d 311 . . . . . . . . . . . . . . . . 17  |-  ( v  =  ( H `  k )  ->  (
( ( ( abs `  ( ( G `  k )  -  A
) )  <  y  /\  ( abs `  (
v  -  B ) )  <  z )  ->  ( abs `  (
( ( G `  k ) F v )  -  ( A F B ) ) )  <  x )  <-> 
( ( ( abs `  ( ( G `  k )  -  A
) )  <  y  /\  ( abs `  (
( H `  k
)  -  B ) )  <  z )  ->  ( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) ) )
3828, 37rspc2v 2891 . . . . . . . . . . . . . . . 16  |-  ( ( ( G `  k
)  e.  C  /\  ( H `  k )  e.  D )  -> 
( A. u  e.  C  A. v  e.  D  ( ( ( abs `  ( u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  < 
z )  ->  ( abs `  ( ( u F v )  -  ( A F B ) ) )  <  x
)  ->  ( (
( abs `  (
( G `  k
)  -  A ) )  <  y  /\  ( abs `  ( ( H `  k )  -  B ) )  <  z )  -> 
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) ) )
3918, 19, 38syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  ( A. u  e.  C  A. v  e.  D  ( ( ( abs `  ( u  -  A
) )  <  y  /\  ( abs `  (
v  -  B ) )  <  z )  ->  ( abs `  (
( u F v )  -  ( A F B ) ) )  <  x )  ->  ( ( ( abs `  ( ( G `  k )  -  A ) )  <  y  /\  ( abs `  ( ( H `
 k )  -  B ) )  < 
z )  ->  ( abs `  ( ( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x
) ) )
4039imp 418 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  Z )  /\  A. u  e.  C  A. v  e.  D  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u F v )  -  ( A F B ) ) )  <  x ) )  ->  ( (
( abs `  (
( G `  k
)  -  A ) )  <  y  /\  ( abs `  ( ( H `  k )  -  B ) )  <  z )  -> 
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) )
4140an32s 779 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A. u  e.  C  A. v  e.  D  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u F v )  -  ( A F B ) ) )  <  x ) )  /\  k  e.  Z )  ->  (
( ( abs `  (
( G `  k
)  -  A ) )  <  y  /\  ( abs `  ( ( H `  k )  -  B ) )  <  z )  -> 
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) )
4217, 41sylan2 460 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A. u  e.  C  A. v  e.  D  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u F v )  -  ( A F B ) ) )  <  x ) )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( ( abs `  (
( G `  k
)  -  A ) )  <  y  /\  ( abs `  ( ( H `  k )  -  B ) )  <  z )  -> 
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) )
4342anassrs 629 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A. u  e.  C  A. v  e.  D  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u F v )  -  ( A F B ) ) )  <  x ) )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( abs `  (
( G `  k
)  -  A ) )  <  y  /\  ( abs `  ( ( H `  k )  -  B ) )  <  z )  -> 
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) )
4443ralimdva 2622 . . . . . . . . . 10  |-  ( ( ( ph  /\  A. u  e.  C  A. v  e.  D  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u F v )  -  ( A F B ) ) )  <  x ) )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( abs `  (
( G `  k
)  -  A ) )  <  y  /\  ( abs `  ( ( H `  k )  -  B ) )  <  z )  ->  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( ( G `  k
) F ( H `
 k ) )  -  ( A F B ) ) )  <  x ) )
4544reximdva 2656 . . . . . . . . 9  |-  ( (
ph  /\  A. u  e.  C  A. v  e.  D  ( (
( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u F v )  -  ( A F B ) ) )  <  x ) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( abs `  ( ( G `  k )  -  A ) )  <  y  /\  ( abs `  ( ( H `
 k )  -  B ) )  < 
z )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) )
4645ex 423 . . . . . . . 8  |-  ( ph  ->  ( A. u  e.  C  A. v  e.  D  ( ( ( abs `  ( u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  < 
z )  ->  ( abs `  ( ( u F v )  -  ( A F B ) ) )  <  x
)  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( abs `  ( ( G `  k )  -  A ) )  <  y  /\  ( abs `  ( ( H `
 k )  -  B ) )  < 
z )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) ) )
4746adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  ( A. u  e.  C  A. v  e.  D  ( ( ( abs `  ( u  -  A
) )  <  y  /\  ( abs `  (
v  -  B ) )  <  z )  ->  ( abs `  (
( u F v )  -  ( A F B ) ) )  <  x )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( abs `  (
( G `  k
)  -  A ) )  <  y  /\  ( abs `  ( ( H `  k )  -  B ) )  <  z )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( ( G `  k
) F ( H `
 k ) )  -  ( A F B ) ) )  <  x ) ) )
4816, 47mpid 37 . . . . . 6  |-  ( (
ph  /\  ( y  e.  RR+  /\  z  e.  RR+ ) )  ->  ( A. u  e.  C  A. v  e.  D  ( ( ( abs `  ( u  -  A
) )  <  y  /\  ( abs `  (
v  -  B ) )  <  z )  ->  ( abs `  (
( u F v )  -  ( A F B ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( ( G `  k
) F ( H `
 k ) )  -  ( A F B ) ) )  <  x ) )
4948rexlimdvva 2675 . . . . 5  |-  ( ph  ->  ( E. y  e.  RR+  E. z  e.  RR+  A. u  e.  C  A. v  e.  D  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u F v )  -  ( A F B ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( ( G `  k
) F ( H `
 k ) )  -  ( A F B ) ) )  <  x ) )
5049adantr 451 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. y  e.  RR+  E. z  e.  RR+  A. u  e.  C  A. v  e.  D  ( ( ( abs `  ( u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  < 
z )  ->  ( abs `  ( ( u F v )  -  ( A F B ) ) )  <  x
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) )
511, 50mpd 14 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x )
5251ralrimiva 2627 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( ( G `
 k ) F ( H `  k
) )  -  ( A F B ) ) )  <  x )
53 climcn2.6 . . 3  |-  ( ph  ->  K  e.  W )
54 climcn2.9 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( K `  k )  =  ( ( G `
 k ) F ( H `  k
) ) )
55 climcn2.4 . . . 4  |-  ( (
ph  /\  ( u  e.  C  /\  v  e.  D ) )  -> 
( u F v )  e.  CC )
56 climcn2.3a . . . 4  |-  ( ph  ->  A  e.  C )
57 climcn2.3b . . . 4  |-  ( ph  ->  B  e.  D )
5855, 56, 57caovcld 5975 . . 3  |-  ( ph  ->  ( A F B )  e.  CC )
5918, 19jca 518 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( G `  k
)  e.  C  /\  ( H `  k )  e.  D ) )
6055ralrimivva 2636 . . . . 5  |-  ( ph  ->  A. u  e.  C  A. v  e.  D  ( u F v )  e.  CC )
6160adantr 451 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  A. u  e.  C  A. v  e.  D  ( u F v )  e.  CC )
6224eleq1d 2350 . . . . 5  |-  ( u  =  ( G `  k )  ->  (
( u F v )  e.  CC  <->  ( ( G `  k ) F v )  e.  CC ) )
6333eleq1d 2350 . . . . 5  |-  ( v  =  ( H `  k )  ->  (
( ( G `  k ) F v )  e.  CC  <->  ( ( G `  k ) F ( H `  k ) )  e.  CC ) )
6462, 63rspc2v 2891 . . . 4  |-  ( ( ( G `  k
)  e.  C  /\  ( H `  k )  e.  D )  -> 
( A. u  e.  C  A. v  e.  D  ( u F v )  e.  CC  ->  ( ( G `  k ) F ( H `  k ) )  e.  CC ) )
6559, 61, 64sylc 56 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( G `  k
) F ( H `
 k ) )  e.  CC )
662, 3, 53, 54, 58, 65clim2c 11975 . 2  |-  ( ph  ->  ( K  ~~>  ( A F B )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( G `  k ) F ( H `  k ) )  -  ( A F B ) ) )  <  x ) )
6752, 66mpbird 223 1  |-  ( ph  ->  K  ~~>  ( A F B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1685   A.wral 2544   E.wrex 2545   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   CCcc 8731    < clt 8863    - cmin 9033   ZZcz 10020   ZZ>=cuz 10226   RR+crp 10350   abscabs 11715    ~~> cli 11954
This theorem is referenced by:  climadd  12101  climmul  12102  climsub  12103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-pre-lttri 8807  ax-pre-lttrn 8808
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-neg 9036  df-z 10021  df-uz 10227  df-clim 11958
  Copyright terms: Public domain W3C validator