MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climeq Unicode version

Theorem climeq 12037
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climeq.1  |-  Z  =  ( ZZ>= `  M )
climeq.2  |-  ( ph  ->  F  e.  V )
climeq.3  |-  ( ph  ->  G  e.  W )
climeq.5  |-  ( ph  ->  M  e.  ZZ )
climeq.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( G `  k ) )
Assertion
Ref Expression
climeq  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Distinct variable groups:    A, k    k, F    k, G    ph, k    k, Z
Allowed substitution hints:    M( k)    V( k)    W( k)

Proof of Theorem climeq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climeq.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 climeq.5 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 climeq.2 . . 3  |-  ( ph  ->  F  e.  V )
4 climeq.6 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( G `  k ) )
51, 2, 3, 4clim2 11974 . 2  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. y  e.  Z  A. k  e.  ( ZZ>= `  y )
( ( G `  k )  e.  CC  /\  ( abs `  (
( G `  k
)  -  A ) )  <  x ) ) ) )
6 climeq.3 . . 3  |-  ( ph  ->  G  e.  W )
7 eqidd 2285 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( G `  k ) )
81, 2, 6, 7clim2 11974 . 2  |-  ( ph  ->  ( G  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. y  e.  Z  A. k  e.  ( ZZ>= `  y )
( ( G `  k )  e.  CC  /\  ( abs `  (
( G `  k
)  -  A ) )  <  x ) ) ) )
95, 8bitr4d 247 1  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1685   A.wral 2544   E.wrex 2545   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   CCcc 8731    < clt 8863    - cmin 9033   ZZcz 10020   ZZ>=cuz 10226   RR+crp 10350   abscabs 11715    ~~> cli 11954
This theorem is referenced by:  climmpt  12041  climres  12045  climshft  12046  climshft2  12052  isumclim3  12218  logtayl  20003  dfef2  20261  climexp  27142  stirlinglem14  27247
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-pre-lttri 8807  ax-pre-lttrn 8808
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-neg 9036  df-z 10021  df-uz 10227  df-clim 11958
  Copyright terms: Public domain W3C validator