MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climeq Unicode version

Theorem climeq 12349
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climeq.1  |-  Z  =  ( ZZ>= `  M )
climeq.2  |-  ( ph  ->  F  e.  V )
climeq.3  |-  ( ph  ->  G  e.  W )
climeq.5  |-  ( ph  ->  M  e.  ZZ )
climeq.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( G `  k ) )
Assertion
Ref Expression
climeq  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Distinct variable groups:    A, k    k, F    k, G    ph, k    k, Z
Allowed substitution hints:    M( k)    V( k)    W( k)

Proof of Theorem climeq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climeq.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 climeq.5 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 climeq.2 . . 3  |-  ( ph  ->  F  e.  V )
4 climeq.6 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( G `  k ) )
51, 2, 3, 4clim2 12286 . 2  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. y  e.  Z  A. k  e.  ( ZZ>= `  y )
( ( G `  k )  e.  CC  /\  ( abs `  (
( G `  k
)  -  A ) )  <  x ) ) ) )
6 climeq.3 . . 3  |-  ( ph  ->  G  e.  W )
7 eqidd 2436 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( G `  k ) )
81, 2, 6, 7clim2 12286 . 2  |-  ( ph  ->  ( G  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. y  e.  Z  A. k  e.  ( ZZ>= `  y )
( ( G `  k )  e.  CC  /\  ( abs `  (
( G `  k
)  -  A ) )  <  x ) ) ) )
95, 8bitr4d 248 1  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   class class class wbr 4204   ` cfv 5445  (class class class)co 6072   CCcc 8977    < clt 9109    - cmin 9280   ZZcz 10271   ZZ>=cuz 10477   RR+crp 10601   abscabs 12027    ~~> cli 12266
This theorem is referenced by:  climmpt  12353  climres  12357  climshft  12358  climshft2  12364  isumclim3  12531  logtayl  20539  dfef2  20797  iprodclim3  25302  climexp  27645  stirlinglem14  27750
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-cnex 9035  ax-resscn 9036  ax-pre-lttri 9053  ax-pre-lttrn 9054
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-neg 9283  df-z 10272  df-uz 10478  df-clim 12270
  Copyright terms: Public domain W3C validator