MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climmulc2 Unicode version

Theorem climmulc2 12076
Description: Limit of a sequence multiplied by a constant  C. Corollary 12-2.2 of [Gleason] p. 171. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
climadd.1  |-  Z  =  ( ZZ>= `  M )
climadd.2  |-  ( ph  ->  M  e.  ZZ )
climadd.4  |-  ( ph  ->  F  ~~>  A )
climaddc1.5  |-  ( ph  ->  C  e.  CC )
climaddc1.6  |-  ( ph  ->  G  e.  W )
climaddc1.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
climmulc2.h  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  x.  ( F `  k ) ) )
Assertion
Ref Expression
climmulc2  |-  ( ph  ->  G  ~~>  ( C  x.  A ) )
Distinct variable groups:    C, k    k, F    ph, k    A, k   
k, G    k, M    k, Z
Allowed substitution hint:    W( k)

Proof of Theorem climmulc2
StepHypRef Expression
1 climadd.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climadd.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climaddc1.5 . . 3  |-  ( ph  ->  C  e.  CC )
4 0z 10003 . . 3  |-  0  e.  ZZ
5 uzssz 10215 . . . 4  |-  ( ZZ>= ` 
0 )  C_  ZZ
6 zex 10001 . . . 4  |-  ZZ  e.  _V
75, 6climconst2 11988 . . 3  |-  ( ( C  e.  CC  /\  0  e.  ZZ )  ->  ( ZZ  X.  { C } )  ~~>  C )
83, 4, 7sylancl 646 . 2  |-  ( ph  ->  ( ZZ  X.  { C } )  ~~>  C )
9 climaddc1.6 . 2  |-  ( ph  ->  G  e.  W )
10 climadd.4 . 2  |-  ( ph  ->  F  ~~>  A )
11 eluzelz 10206 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
1211, 1eleq2s 2350 . . . 4  |-  ( k  e.  Z  ->  k  e.  ZZ )
13 fvconst2g 5661 . . . 4  |-  ( ( C  e.  CC  /\  k  e.  ZZ )  ->  ( ( ZZ  X.  { C } ) `  k )  =  C )
143, 12, 13syl2an 465 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ZZ  X.  { C } ) `  k
)  =  C )
153adantr 453 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  C  e.  CC )
1614, 15eqeltrd 2332 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ZZ  X.  { C } ) `  k
)  e.  CC )
17 climaddc1.7 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
18 climmulc2.h . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  x.  ( F `  k ) ) )
1914oveq1d 5807 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( ZZ  X.  { C } ) `  k )  x.  ( F `  k )
)  =  ( C  x.  ( F `  k ) ) )
2018, 19eqtr4d 2293 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( ( ( ZZ  X.  { C } ) `  k
)  x.  ( F `
 k ) ) )
211, 2, 8, 9, 10, 16, 17, 20climmul 12072 1  |-  ( ph  ->  G  ~~>  ( C  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   {csn 3614   class class class wbr 3997    X. cxp 4659   ` cfv 4673  (class class class)co 5792   CCcc 8703   0cc0 8705    x. cmul 8710   ZZcz 9992   ZZ>=cuz 10198    ~~> cli 11924
This theorem is referenced by:  isermulc2  12097  geolim  12289  geo2lim  12294  itg1climres  19032  itg2monolem1  19068  circum  23380  geomcau  25843  wallispi  27188  stirlinglem1  27192  stirlinglem7  27198  stirlinglem15  27206
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-sup 7162  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9934  df-z 9993  df-uz 10199  df-rp 10323  df-seq 11014  df-exp 11072  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687  df-clim 11928
  Copyright terms: Public domain W3C validator