MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climrecl Structured version   Unicode version

Theorem climrecl 12367
Description: The limit of a convergent real sequence is real. Corollary 12-2.5 of [Gleason] p. 172. (Contributed by NM, 10-Sep-2005.) (Proof shortened by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
climshft2.1  |-  Z  =  ( ZZ>= `  M )
climshft2.2  |-  ( ph  ->  M  e.  ZZ )
climrecl.3  |-  ( ph  ->  F  ~~>  A )
climrecl.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
Assertion
Ref Expression
climrecl  |-  ( ph  ->  A  e.  RR )
Distinct variable groups:    k, F    k, M    ph, k    k, Z    A, k

Proof of Theorem climrecl
StepHypRef Expression
1 climshft2.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
2 climshft2.1 . . . 4  |-  Z  =  ( ZZ>= `  M )
32uzsup 11234 . . 3  |-  ( M  e.  ZZ  ->  sup ( Z ,  RR* ,  <  )  =  +oo )
41, 3syl 16 . 2  |-  ( ph  ->  sup ( Z ,  RR* ,  <  )  = 
+oo )
5 climrecl.3 . . . 4  |-  ( ph  ->  F  ~~>  A )
6 climrel 12276 . . . . . . 7  |-  Rel  ~~>
76brrelexi 4910 . . . . . 6  |-  ( F  ~~>  A  ->  F  e.  _V )
85, 7syl 16 . . . . 5  |-  ( ph  ->  F  e.  _V )
9 eqid 2435 . . . . . 6  |-  ( k  e.  Z  |->  ( F `
 k ) )  =  ( k  e.  Z  |->  ( F `  k ) )
102, 9climmpt 12355 . . . . 5  |-  ( ( M  e.  ZZ  /\  F  e.  _V )  ->  ( F  ~~>  A  <->  ( k  e.  Z  |->  ( F `
 k ) )  ~~>  A ) )
111, 8, 10syl2anc 643 . . . 4  |-  ( ph  ->  ( F  ~~>  A  <->  ( k  e.  Z  |->  ( F `
 k ) )  ~~>  A ) )
125, 11mpbid 202 . . 3  |-  ( ph  ->  ( k  e.  Z  |->  ( F `  k
) )  ~~>  A )
13 climrecl.4 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
1413recnd 9104 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
1514, 9fmptd 5885 . . . 4  |-  ( ph  ->  ( k  e.  Z  |->  ( F `  k
) ) : Z --> CC )
162, 1, 15rlimclim 12330 . . 3  |-  ( ph  ->  ( ( k  e.  Z  |->  ( F `  k ) )  ~~> r  A  <->  ( k  e.  Z  |->  ( F `  k ) )  ~~>  A ) )
1712, 16mpbird 224 . 2  |-  ( ph  ->  ( k  e.  Z  |->  ( F `  k
) )  ~~> r  A
)
184, 17, 13rlimrecl 12364 1  |-  ( ph  ->  A  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2948   class class class wbr 4204    e. cmpt 4258   ` cfv 5446   supcsup 7437   CCcc 8978   RRcr 8979    +oocpnf 9107   RR*cxr 9109    < clt 9110   ZZcz 10272   ZZ>=cuz 10478    ~~> cli 12268    ~~> r crli 12269
This theorem is referenced by:  climle  12423  climsqz  12424  climsqz2  12425  isumrecl  12539  prmreclem6  13279  mbflimlem  19549  emcllem7  20830  rge0scvg  24325  esumpcvgval  24458  regamcl  24835  relgamcl  24836  climlec3  25204  iprodrecl  25305  rrncmslem  26495  climreeq  27670
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-2 10048  df-3 10049  df-n0 10212  df-z 10273  df-uz 10479  df-rp 10603  df-fl 11192  df-seq 11314  df-exp 11373  df-cj 11894  df-re 11895  df-im 11896  df-sqr 12030  df-abs 12031  df-clim 12272  df-rlim 12273
  Copyright terms: Public domain W3C validator