MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsub Unicode version

Theorem climsub 12101
Description: Limit of the difference of two converging sequences. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
Hypotheses
Ref Expression
climadd.1  |-  Z  =  ( ZZ>= `  M )
climadd.2  |-  ( ph  ->  M  e.  ZZ )
climadd.4  |-  ( ph  ->  F  ~~>  A )
climadd.6  |-  ( ph  ->  H  e.  X )
climadd.7  |-  ( ph  ->  G  ~~>  B )
climadd.8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
climadd.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
climsub.h  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `
 k )  -  ( G `  k ) ) )
Assertion
Ref Expression
climsub  |-  ( ph  ->  H  ~~>  ( A  -  B ) )
Distinct variable groups:    B, k    k, F    ph, k    A, k   
k, G    k, H    k, M    k, Z
Allowed substitution hint:    X( k)

Proof of Theorem climsub
StepHypRef Expression
1 climadd.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climadd.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climadd.4 . . 3  |-  ( ph  ->  F  ~~>  A )
4 climcl 11967 . . 3  |-  ( F  ~~>  A  ->  A  e.  CC )
53, 4syl 17 . 2  |-  ( ph  ->  A  e.  CC )
6 climadd.7 . . 3  |-  ( ph  ->  G  ~~>  B )
7 climcl 11967 . . 3  |-  ( G  ~~>  B  ->  B  e.  CC )
86, 7syl 17 . 2  |-  ( ph  ->  B  e.  CC )
9 subcl 9046 . . 3  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  -  v
)  e.  CC )
109adantl 454 . 2  |-  ( (
ph  /\  ( u  e.  CC  /\  v  e.  CC ) )  -> 
( u  -  v
)  e.  CC )
11 climadd.6 . 2  |-  ( ph  ->  H  e.  X )
12 simpr 449 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
135adantr 453 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  A  e.  CC )
148adantr 453 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  B  e.  CC )
15 subcn2 12062 . . 3  |-  ( ( x  e.  RR+  /\  A  e.  CC  /\  B  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( A  -  B ) ) )  <  x ) )
1612, 13, 14, 15syl3anc 1187 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( A  -  B ) ) )  <  x ) )
17 climadd.8 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
18 climadd.9 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
19 climsub.h . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `
 k )  -  ( G `  k ) ) )
201, 2, 5, 8, 10, 3, 6, 11, 16, 17, 18, 19climcn2 12060 1  |-  ( ph  ->  H  ~~>  ( A  -  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1628    e. wcel 1688   A.wral 2544   E.wrex 2545   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   CCcc 8730    < clt 8862    - cmin 9032   ZZcz 10019   ZZ>=cuz 10225   RR+crp 10349   abscabs 11713    ~~> cli 11952
This theorem is referenced by:  climsubc1  12105  climsubc2  12106  climle  12107  supcvg  12308  mbfi1flimlem  19071  ulmdvlem1  19771  abelthlem6  19806  atantayl  20227
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-sup 7189  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-rp 10350  df-seq 11041  df-exp 11099  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-clim 11956
  Copyright terms: Public domain W3C validator