MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsub Unicode version

Theorem climsub 12072
Description: Limit of the difference of two converging sequences. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
Hypotheses
Ref Expression
climadd.1  |-  Z  =  ( ZZ>= `  M )
climadd.2  |-  ( ph  ->  M  e.  ZZ )
climadd.4  |-  ( ph  ->  F  ~~>  A )
climadd.6  |-  ( ph  ->  H  e.  X )
climadd.7  |-  ( ph  ->  G  ~~>  B )
climadd.8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
climadd.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
climsub.h  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `
 k )  -  ( G `  k ) ) )
Assertion
Ref Expression
climsub  |-  ( ph  ->  H  ~~>  ( A  -  B ) )
Distinct variable groups:    B, k    k, F    ph, k    A, k   
k, G    k, H    k, M    k, Z
Allowed substitution hint:    X( k)

Proof of Theorem climsub
StepHypRef Expression
1 climadd.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climadd.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climadd.4 . . 3  |-  ( ph  ->  F  ~~>  A )
4 climcl 11938 . . 3  |-  ( F  ~~>  A  ->  A  e.  CC )
53, 4syl 17 . 2  |-  ( ph  ->  A  e.  CC )
6 climadd.7 . . 3  |-  ( ph  ->  G  ~~>  B )
7 climcl 11938 . . 3  |-  ( G  ~~>  B  ->  B  e.  CC )
86, 7syl 17 . 2  |-  ( ph  ->  B  e.  CC )
9 subcl 9019 . . 3  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  -  v
)  e.  CC )
109adantl 454 . 2  |-  ( (
ph  /\  ( u  e.  CC  /\  v  e.  CC ) )  -> 
( u  -  v
)  e.  CC )
11 climadd.6 . 2  |-  ( ph  ->  H  e.  X )
12 simpr 449 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
135adantr 453 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  A  e.  CC )
148adantr 453 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  B  e.  CC )
15 subcn2 12033 . . 3  |-  ( ( x  e.  RR+  /\  A  e.  CC  /\  B  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( A  -  B ) ) )  <  x ) )
1612, 13, 14, 15syl3anc 1187 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( A  -  B ) ) )  <  x ) )
17 climadd.8 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
18 climadd.9 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
19 climsub.h . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `
 k )  -  ( G `  k ) ) )
201, 2, 5, 8, 10, 3, 6, 11, 16, 17, 18, 19climcn2 12031 1  |-  ( ph  ->  H  ~~>  ( A  -  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2518   E.wrex 2519   class class class wbr 3997   ` cfv 4673  (class class class)co 5792   CCcc 8703    < clt 8835    - cmin 9005   ZZcz 9991   ZZ>=cuz 10197   RR+crp 10321   abscabs 11684    ~~> cli 11923
This theorem is referenced by:  climsubc1  12076  climsubc2  12077  climle  12078  supcvg  12276  mbfi1flimlem  19039  ulmdvlem1  19739  abelthlem6  19774  atantayl  20195
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-sup 7162  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9933  df-z 9992  df-uz 10198  df-rp 10322  df-seq 11013  df-exp 11071  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-clim 11927
  Copyright terms: Public domain W3C validator