MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsup Unicode version

Theorem climsup 12159
Description: A bounded monotonic sequence converges to the supremum of its range. Theorem 12-5.1 of [Gleason] p. 180. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
Hypotheses
Ref Expression
climsup.1  |-  Z  =  ( ZZ>= `  M )
climsup.2  |-  ( ph  ->  M  e.  ZZ )
climsup.3  |-  ( ph  ->  F : Z --> RR )
climsup.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( F `  (
k  +  1 ) ) )
climsup.5  |-  ( ph  ->  E. x  e.  RR  A. k  e.  Z  ( F `  k )  <_  x )
Assertion
Ref Expression
climsup  |-  ( ph  ->  F  ~~>  sup ( ran  F ,  RR ,  <  )
)
Distinct variable groups:    x, k, F    ph, k    k, Z, x
Allowed substitution hints:    ph( x)    M( x, k)

Proof of Theorem climsup
Dummy variables  j  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climsup.3 . . . . . . . . . 10  |-  ( ph  ->  F : Z --> RR )
2 frn 5411 . . . . . . . . . 10  |-  ( F : Z --> RR  ->  ran 
F  C_  RR )
31, 2syl 15 . . . . . . . . 9  |-  ( ph  ->  ran  F  C_  RR )
4 ffn 5405 . . . . . . . . . . . 12  |-  ( F : Z --> RR  ->  F  Fn  Z )
51, 4syl 15 . . . . . . . . . . 11  |-  ( ph  ->  F  Fn  Z )
6 climsup.2 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ZZ )
7 uzid 10258 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
86, 7syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
9 climsup.1 . . . . . . . . . . . 12  |-  Z  =  ( ZZ>= `  M )
108, 9syl6eleqr 2387 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  Z )
11 fnfvelrn 5678 . . . . . . . . . . 11  |-  ( ( F  Fn  Z  /\  M  e.  Z )  ->  ( F `  M
)  e.  ran  F
)
125, 10, 11syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( F `  M
)  e.  ran  F
)
13 ne0i 3474 . . . . . . . . . 10  |-  ( ( F `  M )  e.  ran  F  ->  ran  F  =/=  (/) )
1412, 13syl 15 . . . . . . . . 9  |-  ( ph  ->  ran  F  =/=  (/) )
15 climsup.5 . . . . . . . . . 10  |-  ( ph  ->  E. x  e.  RR  A. k  e.  Z  ( F `  k )  <_  x )
16 breq1 4042 . . . . . . . . . . . . 13  |-  ( y  =  ( F `  k )  ->  (
y  <_  x  <->  ( F `  k )  <_  x
) )
1716ralrn 5684 . . . . . . . . . . . 12  |-  ( F  Fn  Z  ->  ( A. y  e.  ran  F  y  <_  x  <->  A. k  e.  Z  ( F `  k )  <_  x
) )
1817rexbidv 2577 . . . . . . . . . . 11  |-  ( F  Fn  Z  ->  ( E. x  e.  RR  A. y  e.  ran  F  y  <_  x  <->  E. x  e.  RR  A. k  e.  Z  ( F `  k )  <_  x
) )
195, 18syl 15 . . . . . . . . . 10  |-  ( ph  ->  ( E. x  e.  RR  A. y  e. 
ran  F  y  <_  x  <->  E. x  e.  RR  A. k  e.  Z  ( F `  k )  <_  x ) )
2015, 19mpbird 223 . . . . . . . . 9  |-  ( ph  ->  E. x  e.  RR  A. y  e.  ran  F  y  <_  x )
213, 14, 203jca 1132 . . . . . . . 8  |-  ( ph  ->  ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  y  <_  x ) )
22 suprcl 9730 . . . . . . . 8  |-  ( ( ran  F  C_  RR  /\ 
ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
2321, 22syl 15 . . . . . . 7  |-  ( ph  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
24 ltsubrp 10401 . . . . . . 7  |-  ( ( sup ( ran  F ,  RR ,  <  )  e.  RR  /\  y  e.  RR+ )  ->  ( sup ( ran  F ,  RR ,  <  )  -  y )  <  sup ( ran  F ,  RR ,  <  ) )
2523, 24sylan 457 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( sup ( ran  F ,  RR ,  <  )  -  y
)  <  sup ( ran  F ,  RR ,  <  ) )
2621adantr 451 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( ran  F 
C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  y  <_  x ) )
27 rpre 10376 . . . . . . . 8  |-  ( y  e.  RR+  ->  y  e.  RR )
28 resubcl 9127 . . . . . . . 8  |-  ( ( sup ( ran  F ,  RR ,  <  )  e.  RR  /\  y  e.  RR )  ->  ( sup ( ran  F ,  RR ,  <  )  -  y )  e.  RR )
2923, 27, 28syl2an 463 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( sup ( ran  F ,  RR ,  <  )  -  y
)  e.  RR )
30 suprlub 9732 . . . . . . 7  |-  ( ( ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  -  y )  e.  RR )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  y )  <  sup ( ran  F ,  RR ,  <  )  <->  E. k  e.  ran  F ( sup ( ran  F ,  RR ,  <  )  -  y )  <  k
) )
3126, 29, 30syl2anc 642 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  y )  <  sup ( ran  F ,  RR ,  <  )  <->  E. k  e.  ran  F ( sup ( ran  F ,  RR ,  <  )  -  y )  <  k
) )
3225, 31mpbid 201 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. k  e.  ran  F ( sup ( ran  F ,  RR ,  <  )  -  y )  <  k
)
33 breq2 4043 . . . . . . . 8  |-  ( k  =  ( F `  j )  ->  (
( sup ( ran 
F ,  RR ,  <  )  -  y )  <  k  <->  ( sup ( ran  F ,  RR ,  <  )  -  y
)  <  ( F `  j ) ) )
3433rexrn 5683 . . . . . . 7  |-  ( F  Fn  Z  ->  ( E. k  e.  ran  F ( sup ( ran 
F ,  RR ,  <  )  -  y )  <  k  <->  E. j  e.  Z  ( sup ( ran  F ,  RR ,  <  )  -  y
)  <  ( F `  j ) ) )
355, 34syl 15 . . . . . 6  |-  ( ph  ->  ( E. k  e. 
ran  F ( sup ( ran  F ,  RR ,  <  )  -  y )  <  k  <->  E. j  e.  Z  ( sup ( ran  F ,  RR ,  <  )  -  y )  < 
( F `  j
) ) )
3635biimpa 470 . . . . 5  |-  ( (
ph  /\  E. k  e.  ran  F ( sup ( ran  F ,  RR ,  <  )  -  y )  <  k
)  ->  E. j  e.  Z  ( sup ( ran  F ,  RR ,  <  )  -  y
)  <  ( F `  j ) )
3732, 36syldan 456 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  ( sup ( ran  F ,  RR ,  <  )  -  y
)  <  ( F `  j ) )
38 ffvelrn 5679 . . . . . . . . . . . 12  |-  ( ( F : Z --> RR  /\  j  e.  Z )  ->  ( F `  j
)  e.  RR )
391, 38sylan 457 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  e.  RR )
4039ad2ant2r 727 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  j )  e.  RR )
411adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  RR+ )  ->  F : Z
--> RR )
429uztrn2 10261 . . . . . . . . . . 11  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
43 ffvelrn 5679 . . . . . . . . . . 11  |-  ( ( F : Z --> RR  /\  k  e.  Z )  ->  ( F `  k
)  e.  RR )
4441, 42, 43syl2an 463 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  k )  e.  RR )
4523ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
46 simprr 733 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  k  e.  (
ZZ>= `  j ) )
47 fzssuz 10848 . . . . . . . . . . . . . 14  |-  ( j ... k )  C_  ( ZZ>= `  j )
48 uzss 10264 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  j )  C_  ( ZZ>=
`  M ) )
4948, 9syl6sseqr 3238 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  j )  C_  Z
)
5049, 9eleq2s 2388 . . . . . . . . . . . . . . 15  |-  ( j  e.  Z  ->  ( ZZ>=
`  j )  C_  Z )
5150ad2antrl 708 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ZZ>= `  j
)  C_  Z )
5247, 51syl5ss 3203 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( j ... k )  C_  Z
)
53 ffvelrn 5679 . . . . . . . . . . . . . . . 16  |-  ( ( F : Z --> RR  /\  n  e.  Z )  ->  ( F `  n
)  e.  RR )
5453ralrimiva 2639 . . . . . . . . . . . . . . 15  |-  ( F : Z --> RR  ->  A. n  e.  Z  ( F `  n )  e.  RR )
551, 54syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. n  e.  Z  ( F `  n )  e.  RR )
5655ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A. n  e.  Z  ( F `  n )  e.  RR )
57 ssralv 3250 . . . . . . . . . . . . 13  |-  ( ( j ... k ) 
C_  Z  ->  ( A. n  e.  Z  ( F `  n )  e.  RR  ->  A. n  e.  ( j ... k
) ( F `  n )  e.  RR ) )
5852, 56, 57sylc 56 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A. n  e.  ( j ... k ) ( F `  n
)  e.  RR )
5958r19.21bi 2654 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  ( j ... k
) )  ->  ( F `  n )  e.  RR )
60 fzssuz 10848 . . . . . . . . . . . . . 14  |-  ( j ... ( k  - 
1 ) )  C_  ( ZZ>= `  j )
6160, 51syl5ss 3203 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( j ... ( k  -  1 ) )  C_  Z
)
6261sselda 3193 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  ( j ... (
k  -  1 ) ) )  ->  n  e.  Z )
63 climsup.4 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( F `  (
k  +  1 ) ) )
6463ralrimiva 2639 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
6564ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A. k  e.  Z  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
66 fveq2 5541 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
67 oveq1 5881 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  (
k  +  1 )  =  ( n  + 
1 ) )
6867fveq2d 5545 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  ( F `  ( k  +  1 ) )  =  ( F `  ( n  +  1
) ) )
6966, 68breq12d 4052 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  (
( F `  k
)  <_  ( F `  ( k  +  1 ) )  <->  ( F `  n )  <_  ( F `  ( n  +  1 ) ) ) )
7069rspccva 2896 . . . . . . . . . . . . 13  |-  ( ( A. k  e.  Z  ( F `  k )  <_  ( F `  ( k  +  1 ) )  /\  n  e.  Z )  ->  ( F `  n )  <_  ( F `  (
n  +  1 ) ) )
7165, 70sylan 457 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  Z )  ->  ( F `  n )  <_  ( F `  (
n  +  1 ) ) )
7262, 71syldan 456 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  ( j ... (
k  -  1 ) ) )  ->  ( F `  n )  <_  ( F `  (
n  +  1 ) ) )
7346, 59, 72monoord 11092 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  j )  <_  ( F `  k )
)
7440, 44, 45, 73lesub2dd 9405 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 k ) )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 j ) ) )
7545, 44resubcld 9227 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 k ) )  e.  RR )
7645, 40resubcld 9227 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 j ) )  e.  RR )
7727ad2antlr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  y  e.  RR )
78 lelttr 8928 . . . . . . . . . 10  |-  ( ( ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 k ) )  e.  RR  /\  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  j ) )  e.  RR  /\  y  e.  RR )  ->  ( ( ( sup ( ran  F ,  RR ,  <  )  -  ( F `  k ) )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  j )
)  /\  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  j )
)  <  y )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 k ) )  <  y ) )
7975, 76, 77, 78syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( sup ( ran  F ,  RR ,  <  )  -  ( F `  k ) )  <_ 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 j ) )  /\  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 j ) )  <  y )  -> 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 k ) )  <  y ) )
8074, 79mpand 656 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  ( F `  j ) )  <  y  -> 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 k ) )  <  y ) )
81 ltsub23 9270 . . . . . . . . 9  |-  ( ( sup ( ran  F ,  RR ,  <  )  e.  RR  /\  y  e.  RR  /\  ( F `
 j )  e.  RR )  ->  (
( sup ( ran 
F ,  RR ,  <  )  -  y )  <  ( F `  j )  <->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  j )
)  <  y )
)
8245, 77, 40, 81syl3anc 1182 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  y )  <  ( F `  j )  <->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  j ) )  < 
y ) )
8321ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  y  <_  x ) )
845adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  RR+ )  ->  F  Fn  Z )
85 fnfvelrn 5678 . . . . . . . . . . . 12  |-  ( ( F  Fn  Z  /\  k  e.  Z )  ->  ( F `  k
)  e.  ran  F
)
8684, 42, 85syl2an 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  k )  e.  ran  F )
87 suprub 9731 . . . . . . . . . . 11  |-  ( ( ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  y  <_  x )  /\  ( F `
 k )  e. 
ran  F )  -> 
( F `  k
)  <_  sup ( ran  F ,  RR ,  <  ) )
8883, 86, 87syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  k )  <_  sup ( ran  F ,  RR ,  <  ) )
8944, 45, 88abssuble0d 11931 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  <  ) ) )  =  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 k ) ) )
9089breq1d 4049 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( abs `  ( ( F `  k )  -  sup ( ran  F ,  RR ,  <  ) ) )  <  y  <->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  k )
)  <  y )
)
9180, 82, 903imtr4d 259 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  y )  <  ( F `  j )  ->  ( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  <  ) ) )  < 
y ) )
9291anassrs 629 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  y )  <  ( F `  j )  ->  ( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  <  ) ) )  < 
y ) )
9392ralrimdva 2646 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  ->  (
( sup ( ran 
F ,  RR ,  <  )  -  y )  <  ( F `  j )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  <  ) ) )  < 
y ) )
9493reximdva 2668 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( E. j  e.  Z  ( sup ( ran  F ,  RR ,  <  )  -  y )  <  ( F `  j )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  sup ( ran 
F ,  RR ,  <  ) ) )  < 
y ) )
9537, 94mpd 14 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  <  ) ) )  < 
y )
9695ralrimiva 2639 . 2  |-  ( ph  ->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  sup ( ran  F ,  RR ,  <  ) ) )  <  y )
97 fvex 5555 . . . . 5  |-  ( ZZ>= `  M )  e.  _V
989, 97eqeltri 2366 . . . 4  |-  Z  e. 
_V
99 fex 5765 . . . 4  |-  ( ( F : Z --> RR  /\  Z  e.  _V )  ->  F  e.  _V )
1001, 98, 99sylancl 643 . . 3  |-  ( ph  ->  F  e.  _V )
101 eqidd 2297 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
10223recnd 8877 . . 3  |-  ( ph  ->  sup ( ran  F ,  RR ,  <  )  e.  CC )
1031, 43sylan 457 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
104103recnd 8877 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
1059, 6, 100, 101, 102, 104clim2c 11995 . 2  |-  ( ph  ->  ( F  ~~>  sup ( ran  F ,  RR ,  <  )  <->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  sup ( ran  F ,  RR ,  <  ) ) )  <  y ) )
10696, 105mpbird 223 1  |-  ( ph  ->  F  ~~>  sup ( ran  F ,  RR ,  <  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   (/)c0 3468   class class class wbr 4039   ran crn 4706    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874   supcsup 7209   RRcr 8752   1c1 8754    + caddc 8756    < clt 8883    <_ cle 8884    - cmin 9053   ZZcz 10040   ZZ>=cuz 10246   RR+crp 10370   ...cfz 10798   abscabs 11735    ~~> cli 11974
This theorem is referenced by:  isumsup2  12321  climcnds  12326  itg1climres  19085  itg2monolem1  19121  itg2i1fseq  19126  itg2i1fseq2  19127  emcllem6  20310  lmdvg  23391  esumpcvgval  23461
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978
  Copyright terms: Public domain W3C validator