MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsup Unicode version

Theorem climsup 12020
Description: A bounded monotonic sequence converges to the supremum of its range. Theorem 12-5.1 of [Gleason] p. 180. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
Hypotheses
Ref Expression
climsup.1  |-  Z  =  ( ZZ>= `  M )
climsup.2  |-  ( ph  ->  M  e.  ZZ )
climsup.3  |-  ( ph  ->  F : Z --> RR )
climsup.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( F `  (
k  +  1 ) ) )
climsup.5  |-  ( ph  ->  E. x  e.  RR  A. k  e.  Z  ( F `  k )  <_  x )
Assertion
Ref Expression
climsup  |-  ( ph  ->  F  ~~>  sup ( ran  F ,  RR ,  <  )
)
Distinct variable groups:    x, k, F    ph, k    k, Z, x
Allowed substitution hints:    ph( x)    M( x, k)

Proof of Theorem climsup
StepHypRef Expression
1 climsup.3 . . . . . . . . . 10  |-  ( ph  ->  F : Z --> RR )
2 frn 5252 . . . . . . . . . 10  |-  ( F : Z --> RR  ->  ran 
F  C_  RR )
31, 2syl 17 . . . . . . . . 9  |-  ( ph  ->  ran  F  C_  RR )
4 ffn 5246 . . . . . . . . . . . 12  |-  ( F : Z --> RR  ->  F  Fn  Z )
51, 4syl 17 . . . . . . . . . . 11  |-  ( ph  ->  F  Fn  Z )
6 climsup.2 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ZZ )
7 uzid 10121 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
86, 7syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
9 climsup.1 . . . . . . . . . . . 12  |-  Z  =  ( ZZ>= `  M )
108, 9syl6eleqr 2344 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  Z )
11 fnfvelrn 5514 . . . . . . . . . . 11  |-  ( ( F  Fn  Z  /\  M  e.  Z )  ->  ( F `  M
)  e.  ran  F
)
125, 10, 11syl2anc 645 . . . . . . . . . 10  |-  ( ph  ->  ( F `  M
)  e.  ran  F
)
13 ne0i 3368 . . . . . . . . . 10  |-  ( ( F `  M )  e.  ran  F  ->  ran  F  =/=  (/) )
1412, 13syl 17 . . . . . . . . 9  |-  ( ph  ->  ran  F  =/=  (/) )
15 climsup.5 . . . . . . . . . 10  |-  ( ph  ->  E. x  e.  RR  A. k  e.  Z  ( F `  k )  <_  x )
16 breq1 3923 . . . . . . . . . . . . 13  |-  ( y  =  ( F `  k )  ->  (
y  <_  x  <->  ( F `  k )  <_  x
) )
1716ralrn 5520 . . . . . . . . . . . 12  |-  ( F  Fn  Z  ->  ( A. y  e.  ran  F  y  <_  x  <->  A. k  e.  Z  ( F `  k )  <_  x
) )
1817rexbidv 2528 . . . . . . . . . . 11  |-  ( F  Fn  Z  ->  ( E. x  e.  RR  A. y  e.  ran  F  y  <_  x  <->  E. x  e.  RR  A. k  e.  Z  ( F `  k )  <_  x
) )
195, 18syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( E. x  e.  RR  A. y  e. 
ran  F  y  <_  x  <->  E. x  e.  RR  A. k  e.  Z  ( F `  k )  <_  x ) )
2015, 19mpbird 225 . . . . . . . . 9  |-  ( ph  ->  E. x  e.  RR  A. y  e.  ran  F  y  <_  x )
213, 14, 203jca 1137 . . . . . . . 8  |-  ( ph  ->  ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  y  <_  x ) )
22 suprcl 9594 . . . . . . . 8  |-  ( ( ran  F  C_  RR  /\ 
ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e.  ran  F  y  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
2321, 22syl 17 . . . . . . 7  |-  ( ph  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
24 ltsubrp 10264 . . . . . . 7  |-  ( ( sup ( ran  F ,  RR ,  <  )  e.  RR  /\  y  e.  RR+ )  ->  ( sup ( ran  F ,  RR ,  <  )  -  y )  <  sup ( ran  F ,  RR ,  <  ) )
2523, 24sylan 459 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( sup ( ran  F ,  RR ,  <  )  -  y
)  <  sup ( ran  F ,  RR ,  <  ) )
2621adantr 453 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( ran  F 
C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  y  <_  x ) )
27 rpre 10239 . . . . . . . 8  |-  ( y  e.  RR+  ->  y  e.  RR )
28 resubcl 8991 . . . . . . . 8  |-  ( ( sup ( ran  F ,  RR ,  <  )  e.  RR  /\  y  e.  RR )  ->  ( sup ( ran  F ,  RR ,  <  )  -  y )  e.  RR )
2923, 27, 28syl2an 465 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( sup ( ran  F ,  RR ,  <  )  -  y
)  e.  RR )
30 suprlub 9596 . . . . . . 7  |-  ( ( ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  y  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  -  y )  e.  RR )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  y )  <  sup ( ran  F ,  RR ,  <  )  <->  E. k  e.  ran  F ( sup ( ran  F ,  RR ,  <  )  -  y )  <  k
) )
3126, 29, 30syl2anc 645 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  y )  <  sup ( ran  F ,  RR ,  <  )  <->  E. k  e.  ran  F ( sup ( ran  F ,  RR ,  <  )  -  y )  <  k
) )
3225, 31mpbid 203 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. k  e.  ran  F ( sup ( ran  F ,  RR ,  <  )  -  y )  <  k
)
33 breq2 3924 . . . . . . . 8  |-  ( k  =  ( F `  j )  ->  (
( sup ( ran 
F ,  RR ,  <  )  -  y )  <  k  <->  ( sup ( ran  F ,  RR ,  <  )  -  y
)  <  ( F `  j ) ) )
3433rexrn 5519 . . . . . . 7  |-  ( F  Fn  Z  ->  ( E. k  e.  ran  F ( sup ( ran 
F ,  RR ,  <  )  -  y )  <  k  <->  E. j  e.  Z  ( sup ( ran  F ,  RR ,  <  )  -  y
)  <  ( F `  j ) ) )
355, 34syl 17 . . . . . 6  |-  ( ph  ->  ( E. k  e. 
ran  F ( sup ( ran  F ,  RR ,  <  )  -  y )  <  k  <->  E. j  e.  Z  ( sup ( ran  F ,  RR ,  <  )  -  y )  < 
( F `  j
) ) )
3635biimpa 472 . . . . 5  |-  ( (
ph  /\  E. k  e.  ran  F ( sup ( ran  F ,  RR ,  <  )  -  y )  <  k
)  ->  E. j  e.  Z  ( sup ( ran  F ,  RR ,  <  )  -  y
)  <  ( F `  j ) )
3732, 36syldan 458 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  ( sup ( ran  F ,  RR ,  <  )  -  y
)  <  ( F `  j ) )
38 ffvelrn 5515 . . . . . . . . . . . 12  |-  ( ( F : Z --> RR  /\  j  e.  Z )  ->  ( F `  j
)  e.  RR )
391, 38sylan 459 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  e.  RR )
4039ad2ant2r 730 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  j )  e.  RR )
411adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  RR+ )  ->  F : Z
--> RR )
429uztrn2 10124 . . . . . . . . . . 11  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
43 ffvelrn 5515 . . . . . . . . . . 11  |-  ( ( F : Z --> RR  /\  k  e.  Z )  ->  ( F `  k
)  e.  RR )
4441, 42, 43syl2an 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  k )  e.  RR )
4523ad2antrr 709 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
46 simprr 736 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  k  e.  (
ZZ>= `  j ) )
47 fzssuz 10710 . . . . . . . . . . . . . 14  |-  ( j ... k )  C_  ( ZZ>= `  j )
48 uzss 10127 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  j )  C_  ( ZZ>=
`  M ) )
4948, 9syl6sseqr 3146 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  j )  C_  Z
)
5049, 9eleq2s 2345 . . . . . . . . . . . . . . 15  |-  ( j  e.  Z  ->  ( ZZ>=
`  j )  C_  Z )
5150ad2antrl 711 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ZZ>= `  j
)  C_  Z )
5247, 51syl5ss 3111 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( j ... k )  C_  Z
)
53 ffvelrn 5515 . . . . . . . . . . . . . . . 16  |-  ( ( F : Z --> RR  /\  n  e.  Z )  ->  ( F `  n
)  e.  RR )
5453ralrimiva 2588 . . . . . . . . . . . . . . 15  |-  ( F : Z --> RR  ->  A. n  e.  Z  ( F `  n )  e.  RR )
551, 54syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. n  e.  Z  ( F `  n )  e.  RR )
5655ad2antrr 709 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A. n  e.  Z  ( F `  n )  e.  RR )
57 ssralv 3158 . . . . . . . . . . . . 13  |-  ( ( j ... k ) 
C_  Z  ->  ( A. n  e.  Z  ( F `  n )  e.  RR  ->  A. n  e.  ( j ... k
) ( F `  n )  e.  RR ) )
5852, 56, 57sylc 58 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A. n  e.  ( j ... k ) ( F `  n
)  e.  RR )
5958r19.21bi 2603 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  ( j ... k
) )  ->  ( F `  n )  e.  RR )
60 fzssuz 10710 . . . . . . . . . . . . . 14  |-  ( j ... ( k  - 
1 ) )  C_  ( ZZ>= `  j )
6160, 51syl5ss 3111 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( j ... ( k  -  1 ) )  C_  Z
)
6261sselda 3103 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  ( j ... (
k  -  1 ) ) )  ->  n  e.  Z )
63 climsup.4 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( F `  (
k  +  1 ) ) )
6463ralrimiva 2588 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
6564ad2antrr 709 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A. k  e.  Z  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
66 fveq2 5377 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
67 oveq1 5717 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  (
k  +  1 )  =  ( n  + 
1 ) )
6867fveq2d 5381 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  ( F `  ( k  +  1 ) )  =  ( F `  ( n  +  1
) ) )
6966, 68breq12d 3933 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  (
( F `  k
)  <_  ( F `  ( k  +  1 ) )  <->  ( F `  n )  <_  ( F `  ( n  +  1 ) ) ) )
7069rcla4cva 2820 . . . . . . . . . . . . 13  |-  ( ( A. k  e.  Z  ( F `  k )  <_  ( F `  ( k  +  1 ) )  /\  n  e.  Z )  ->  ( F `  n )  <_  ( F `  (
n  +  1 ) ) )
7165, 70sylan 459 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  Z )  ->  ( F `  n )  <_  ( F `  (
n  +  1 ) ) )
7262, 71syldan 458 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>=
`  j ) ) )  /\  n  e.  ( j ... (
k  -  1 ) ) )  ->  ( F `  n )  <_  ( F `  (
n  +  1 ) ) )
7346, 59, 72monoord 10954 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  j )  <_  ( F `  k )
)
7440, 44, 45, 73lesub2dd 9269 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 k ) )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 j ) ) )
7545, 44resubcld 9091 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 k ) )  e.  RR )
7645, 40resubcld 9091 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 j ) )  e.  RR )
7727ad2antlr 710 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  y  e.  RR )
78 lelttr 8792 . . . . . . . . . 10  |-  ( ( ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 k ) )  e.  RR  /\  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  j ) )  e.  RR  /\  y  e.  RR )  ->  ( ( ( sup ( ran  F ,  RR ,  <  )  -  ( F `  k ) )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  j )
)  /\  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  j )
)  <  y )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 k ) )  <  y ) )
7975, 76, 77, 78syl3anc 1187 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( sup ( ran  F ,  RR ,  <  )  -  ( F `  k ) )  <_ 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 j ) )  /\  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 j ) )  <  y )  -> 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 k ) )  <  y ) )
8074, 79mpand 659 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  ( F `  j ) )  <  y  -> 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 k ) )  <  y ) )
81 ltsub23 9134 . . . . . . . . 9  |-  ( ( sup ( ran  F ,  RR ,  <  )  e.  RR  /\  y  e.  RR  /\  ( F `
 j )  e.  RR )  ->  (
( sup ( ran 
F ,  RR ,  <  )  -  y )  <  ( F `  j )  <->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  j )
)  <  y )
)
8245, 77, 40, 81syl3anc 1187 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  y )  <  ( F `  j )  <->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  j ) )  < 
y ) )
8321ad2antrr 709 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  y  <_  x ) )
845adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  RR+ )  ->  F  Fn  Z )
85 fnfvelrn 5514 . . . . . . . . . . . 12  |-  ( ( F  Fn  Z  /\  k  e.  Z )  ->  ( F `  k
)  e.  ran  F
)
8684, 42, 85syl2an 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  k )  e.  ran  F )
87 suprub 9595 . . . . . . . . . . 11  |-  ( ( ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
ran  F  y  <_  x )  /\  ( F `
 k )  e. 
ran  F )  -> 
( F `  k
)  <_  sup ( ran  F ,  RR ,  <  ) )
8883, 86, 87syl2anc 645 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  k )  <_  sup ( ran  F ,  RR ,  <  ) )
8944, 45, 88abssuble0d 11792 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  <  ) ) )  =  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 k ) ) )
9089breq1d 3930 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( abs `  ( ( F `  k )  -  sup ( ran  F ,  RR ,  <  ) ) )  <  y  <->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  k )
)  <  y )
)
9180, 82, 903imtr4d 261 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  y )  <  ( F `  j )  ->  ( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  <  ) ) )  < 
y ) )
9291anassrs 632 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  y )  <  ( F `  j )  ->  ( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  <  ) ) )  < 
y ) )
9392ralrimdva 2595 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  ->  (
( sup ( ran 
F ,  RR ,  <  )  -  y )  <  ( F `  j )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  <  ) ) )  < 
y ) )
9493reximdva 2617 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( E. j  e.  Z  ( sup ( ran  F ,  RR ,  <  )  -  y )  <  ( F `  j )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  sup ( ran 
F ,  RR ,  <  ) ) )  < 
y ) )
9537, 94mpd 16 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  sup ( ran  F ,  RR ,  <  ) ) )  < 
y )
9695ralrimiva 2588 . 2  |-  ( ph  ->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  sup ( ran  F ,  RR ,  <  ) ) )  <  y )
97 fvex 5391 . . . . 5  |-  ( ZZ>= `  M )  e.  _V
989, 97eqeltri 2323 . . . 4  |-  Z  e. 
_V
99 fex 5601 . . . 4  |-  ( ( F : Z --> RR  /\  Z  e.  _V )  ->  F  e.  _V )
1001, 98, 99sylancl 646 . . 3  |-  ( ph  ->  F  e.  _V )
101 eqidd 2254 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
10223recnd 8741 . . 3  |-  ( ph  ->  sup ( ran  F ,  RR ,  <  )  e.  CC )
1031, 43sylan 459 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
104103recnd 8741 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
1059, 6, 100, 101, 102, 104clim2c 11856 . 2  |-  ( ph  ->  ( F  ~~>  sup ( ran  F ,  RR ,  <  )  <->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  sup ( ran  F ,  RR ,  <  ) ) )  <  y ) )
10696, 105mpbird 225 1  |-  ( ph  ->  F  ~~>  sup ( ran  F ,  RR ,  <  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   E.wrex 2510   _Vcvv 2727    C_ wss 3078   (/)c0 3362   class class class wbr 3920   ran crn 4581    Fn wfn 4587   -->wf 4588   ` cfv 4592  (class class class)co 5710   supcsup 7077   RRcr 8616   1c1 8618    + caddc 8620    < clt 8747    <_ cle 8748    - cmin 8917   ZZcz 9903   ZZ>=cuz 10109   RR+crp 10233   ...cfz 10660   abscabs 11596    ~~> cli 11835
This theorem is referenced by:  isumsup2  12179  climcnds  12184  itg1climres  18901  itg2monolem1  18937  itg2i1fseq  18942  itg2i1fseq2  18943  emcllem6  20126
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-fz 10661  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839
  Copyright terms: Public domain W3C validator