MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsndisj Unicode version

Theorem clsndisj 17127
Description: Any open set containing a point that belongs to the closure of a subset intersects the subset. One direction of Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
clsndisj  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  ( ( cls `  J ) `  S ) )  /\  ( U  e.  J  /\  P  e.  U
) )  ->  ( U  i^i  S )  =/=  (/) )

Proof of Theorem clsndisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp1 957 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  ( ( cls `  J
) `  S )
)  ->  J  e.  Top )
2 simp2 958 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  ( ( cls `  J
) `  S )
)  ->  S  C_  X
)
3 clscld.1 . . . . . 6  |-  X  = 
U. J
43clsss3 17111 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  C_  X )
54sseld 3339 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( P  e.  ( ( cls `  J
) `  S )  ->  P  e.  X ) )
653impia 1150 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  ( ( cls `  J
) `  S )
)  ->  P  e.  X )
7 simp3 959 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  ( ( cls `  J
) `  S )
)  ->  P  e.  ( ( cls `  J
) `  S )
)
83elcls 17125 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) ) )
98biimpa 471 . . 3  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )
101, 2, 6, 7, 9syl31anc 1187 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  ( ( cls `  J
) `  S )
)  ->  A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )
11 eleq2 2496 . . . . 5  |-  ( x  =  U  ->  ( P  e.  x  <->  P  e.  U ) )
12 ineq1 3527 . . . . . 6  |-  ( x  =  U  ->  (
x  i^i  S )  =  ( U  i^i  S ) )
1312neeq1d 2611 . . . . 5  |-  ( x  =  U  ->  (
( x  i^i  S
)  =/=  (/)  <->  ( U  i^i  S )  =/=  (/) ) )
1411, 13imbi12d 312 . . . 4  |-  ( x  =  U  ->  (
( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) )  <->  ( P  e.  U  ->  ( U  i^i  S )  =/=  (/) ) ) )
1514rspccv 3041 . . 3  |-  ( A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  ->  ( U  e.  J  ->  ( P  e.  U  -> 
( U  i^i  S
)  =/=  (/) ) ) )
1615imp32 423 . 2  |-  ( ( A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) )  /\  ( U  e.  J  /\  P  e.  U
) )  ->  ( U  i^i  S )  =/=  (/) )
1710, 16sylan 458 1  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  ( ( cls `  J ) `  S ) )  /\  ( U  e.  J  /\  P  e.  U
) )  ->  ( U  i^i  S )  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697    i^i cin 3311    C_ wss 3312   (/)c0 3620   U.cuni 4007   ` cfv 5445   Topctop 16946   clsccl 17070
This theorem is referenced by:  neindisj  17169  clscon  17481  txcls  17624  ptclsg  17635  flimsncls  18006  hauspwpwf1  18007  met2ndci  18540  metdseq0  18872  heibor1lem  26455
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-top 16951  df-cld 17071  df-ntr 17072  df-cls 17073
  Copyright terms: Public domain W3C validator