MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsval Unicode version

Theorem clsval 16606
Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
clsval  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
Distinct variable groups:    x, J    x, S    x, X

Proof of Theorem clsval
StepHypRef Expression
1 iscld.1 . . . . 5  |-  X  = 
U. J
21clsfval 16594 . . . 4  |-  ( J  e.  Top  ->  ( cls `  J )  =  ( y  e.  ~P X  |->  |^| { x  e.  ( Clsd `  J
)  |  y  C_  x } ) )
32fveq1d 5379 . . 3  |-  ( J  e.  Top  ->  (
( cls `  J
) `  S )  =  ( ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
) `  S )
)
43adantr 453 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
) `  S )
)
51topopn 16484 . . . . 5  |-  ( J  e.  Top  ->  X  e.  J )
6 elpw2g 4063 . . . . 5  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
75, 6syl 17 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
87biimpar 473 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  ~P X
)
91topcld 16604 . . . . 5  |-  ( J  e.  Top  ->  X  e.  ( Clsd `  J
) )
10 sseq2 3121 . . . . . 6  |-  ( x  =  X  ->  ( S  C_  x  <->  S  C_  X
) )
1110rcla4ev 2821 . . . . 5  |-  ( ( X  e.  ( Clsd `  J )  /\  S  C_  X )  ->  E. x  e.  ( Clsd `  J
) S  C_  x
)
129, 11sylan 459 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  E. x  e.  ( Clsd `  J ) S 
C_  x )
13 intexrab 4068 . . . 4  |-  ( E. x  e.  ( Clsd `  J ) S  C_  x 
<-> 
|^| { x  e.  (
Clsd `  J )  |  S  C_  x }  e.  _V )
1412, 13sylib 190 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  |^| { x  e.  (
Clsd `  J )  |  S  C_  x }  e.  _V )
15 sseq1 3120 . . . . . 6  |-  ( y  =  S  ->  (
y  C_  x  <->  S  C_  x
) )
1615rabbidv 2719 . . . . 5  |-  ( y  =  S  ->  { x  e.  ( Clsd `  J
)  |  y  C_  x }  =  {
x  e.  ( Clsd `  J )  |  S  C_  x } )
1716inteqd 3765 . . . 4  |-  ( y  =  S  ->  |^| { x  e.  ( Clsd `  J
)  |  y  C_  x }  =  |^| { x  e.  ( Clsd `  J )  |  S  C_  x } )
18 eqid 2253 . . . 4  |-  ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
)  =  ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
)
1917, 18fvmptg 5452 . . 3  |-  ( ( S  e.  ~P X  /\  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x }  e.  _V )  ->  ( ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
208, 14, 19syl2anc 645 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( y  e. 
~P X  |->  |^| { x  e.  ( Clsd `  J
)  |  y  C_  x } ) `  S
)  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
214, 20eqtrd 2285 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   E.wrex 2510   {crab 2512   _Vcvv 2727    C_ wss 3078   ~Pcpw 3530   U.cuni 3727   |^|cint 3760    e. cmpt 3974   ` cfv 4592   Topctop 16463   Clsdccld 16585   clsccl 16587
This theorem is referenced by:  cldcls  16611  clscld  16616  clsf  16617  clsval2  16619  clsss  16623  sscls  16625
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-top 16468  df-cld 16588  df-cls 16590
  Copyright terms: Public domain W3C validator