MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsval Structured version   Unicode version

Theorem clsval 17139
Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
clsval  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
Distinct variable groups:    x, J    x, S    x, X

Proof of Theorem clsval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5  |-  X  = 
U. J
21clsfval 17127 . . . 4  |-  ( J  e.  Top  ->  ( cls `  J )  =  ( y  e.  ~P X  |->  |^| { x  e.  ( Clsd `  J
)  |  y  C_  x } ) )
32fveq1d 5765 . . 3  |-  ( J  e.  Top  ->  (
( cls `  J
) `  S )  =  ( ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
) `  S )
)
43adantr 453 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
) `  S )
)
51topopn 17017 . . . . 5  |-  ( J  e.  Top  ->  X  e.  J )
6 elpw2g 4398 . . . . 5  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
75, 6syl 16 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
87biimpar 473 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  ~P X
)
91topcld 17137 . . . . 5  |-  ( J  e.  Top  ->  X  e.  ( Clsd `  J
) )
10 sseq2 3359 . . . . . 6  |-  ( x  =  X  ->  ( S  C_  x  <->  S  C_  X
) )
1110rspcev 3061 . . . . 5  |-  ( ( X  e.  ( Clsd `  J )  /\  S  C_  X )  ->  E. x  e.  ( Clsd `  J
) S  C_  x
)
129, 11sylan 459 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  E. x  e.  ( Clsd `  J ) S 
C_  x )
13 intexrab 4394 . . . 4  |-  ( E. x  e.  ( Clsd `  J ) S  C_  x 
<-> 
|^| { x  e.  (
Clsd `  J )  |  S  C_  x }  e.  _V )
1412, 13sylib 190 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  |^| { x  e.  (
Clsd `  J )  |  S  C_  x }  e.  _V )
15 sseq1 3358 . . . . . 6  |-  ( y  =  S  ->  (
y  C_  x  <->  S  C_  x
) )
1615rabbidv 2957 . . . . 5  |-  ( y  =  S  ->  { x  e.  ( Clsd `  J
)  |  y  C_  x }  =  {
x  e.  ( Clsd `  J )  |  S  C_  x } )
1716inteqd 4084 . . . 4  |-  ( y  =  S  ->  |^| { x  e.  ( Clsd `  J
)  |  y  C_  x }  =  |^| { x  e.  ( Clsd `  J )  |  S  C_  x } )
18 eqid 2443 . . . 4  |-  ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
)  =  ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
)
1917, 18fvmptg 5840 . . 3  |-  ( ( S  e.  ~P X  /\  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x }  e.  _V )  ->  ( ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
208, 14, 19syl2anc 644 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( y  e. 
~P X  |->  |^| { x  e.  ( Clsd `  J
)  |  y  C_  x } ) `  S
)  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
214, 20eqtrd 2475 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1654    e. wcel 1728   E.wrex 2713   {crab 2716   _Vcvv 2965    C_ wss 3309   ~Pcpw 3828   U.cuni 4044   |^|cint 4079    e. cmpt 4297   ` cfv 5489   Topctop 16996   Clsdccld 17118   clsccl 17120
This theorem is referenced by:  cldcls  17144  clscld  17149  clsf  17150  clsval2  17152  clsss  17156  sscls  17158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-rep 4351  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2717  df-rex 2718  df-reu 2719  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-op 3852  df-uni 4045  df-int 4080  df-iun 4124  df-br 4244  df-opab 4298  df-mpt 4299  df-id 4533  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-top 17001  df-cld 17121  df-cls 17123
  Copyright terms: Public domain W3C validator