MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsval Unicode version

Theorem clsval 16774
Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
clsval  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
Distinct variable groups:    x, J    x, S    x, X

Proof of Theorem clsval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5  |-  X  = 
U. J
21clsfval 16762 . . . 4  |-  ( J  e.  Top  ->  ( cls `  J )  =  ( y  e.  ~P X  |->  |^| { x  e.  ( Clsd `  J
)  |  y  C_  x } ) )
32fveq1d 5527 . . 3  |-  ( J  e.  Top  ->  (
( cls `  J
) `  S )  =  ( ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
) `  S )
)
43adantr 451 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
) `  S )
)
51topopn 16652 . . . . 5  |-  ( J  e.  Top  ->  X  e.  J )
6 elpw2g 4174 . . . . 5  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
75, 6syl 15 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
87biimpar 471 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  ~P X
)
91topcld 16772 . . . . 5  |-  ( J  e.  Top  ->  X  e.  ( Clsd `  J
) )
10 sseq2 3200 . . . . . 6  |-  ( x  =  X  ->  ( S  C_  x  <->  S  C_  X
) )
1110rspcev 2884 . . . . 5  |-  ( ( X  e.  ( Clsd `  J )  /\  S  C_  X )  ->  E. x  e.  ( Clsd `  J
) S  C_  x
)
129, 11sylan 457 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  E. x  e.  ( Clsd `  J ) S 
C_  x )
13 intexrab 4170 . . . 4  |-  ( E. x  e.  ( Clsd `  J ) S  C_  x 
<-> 
|^| { x  e.  (
Clsd `  J )  |  S  C_  x }  e.  _V )
1412, 13sylib 188 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  |^| { x  e.  (
Clsd `  J )  |  S  C_  x }  e.  _V )
15 sseq1 3199 . . . . . 6  |-  ( y  =  S  ->  (
y  C_  x  <->  S  C_  x
) )
1615rabbidv 2780 . . . . 5  |-  ( y  =  S  ->  { x  e.  ( Clsd `  J
)  |  y  C_  x }  =  {
x  e.  ( Clsd `  J )  |  S  C_  x } )
1716inteqd 3867 . . . 4  |-  ( y  =  S  ->  |^| { x  e.  ( Clsd `  J
)  |  y  C_  x }  =  |^| { x  e.  ( Clsd `  J )  |  S  C_  x } )
18 eqid 2283 . . . 4  |-  ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
)  =  ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
)
1917, 18fvmptg 5600 . . 3  |-  ( ( S  e.  ~P X  /\  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x }  e.  _V )  ->  ( ( y  e.  ~P X  |->  |^|
{ x  e.  (
Clsd `  J )  |  y  C_  x }
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
208, 14, 19syl2anc 642 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( y  e. 
~P X  |->  |^| { x  e.  ( Clsd `  J
)  |  y  C_  x } ) `  S
)  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
214, 20eqtrd 2315 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   {crab 2547   _Vcvv 2788    C_ wss 3152   ~Pcpw 3625   U.cuni 3827   |^|cint 3862    e. cmpt 4077   ` cfv 5255   Topctop 16631   Clsdccld 16753   clsccl 16755
This theorem is referenced by:  cldcls  16779  clscld  16784  clsf  16785  clsval2  16787  clsss  16791  sscls  16793
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-top 16636  df-cld 16756  df-cls 16758
  Copyright terms: Public domain W3C validator