MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsval2 Unicode version

Theorem clsval2 17069
Description: Express closure in terms of interior. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
clsval2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( X  \ 
( ( int `  J
) `  ( X  \  S ) ) ) )

Proof of Theorem clsval2
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 2675 . . . . . 6  |-  { z  e.  ( Clsd `  J
)  |  S  C_  z }  =  {
z  |  ( z  e.  ( Clsd `  J
)  /\  S  C_  z
) }
2 clscld.1 . . . . . . . . . . . . 13  |-  X  = 
U. J
32cldopn 17050 . . . . . . . . . . . 12  |-  ( z  e.  ( Clsd `  J
)  ->  ( X  \  z )  e.  J
)
43ad2antrl 709 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  ( X  \  z )  e.  J
)
5 sscon 3441 . . . . . . . . . . . . 13  |-  ( S 
C_  z  ->  ( X  \  z )  C_  ( X  \  S ) )
65ad2antll 710 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  ( X  \  z )  C_  ( X  \  S ) )
72topopn 16934 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  ->  X  e.  J )
8 difexg 4311 . . . . . . . . . . . . . 14  |-  ( X  e.  J  ->  ( X  \  z )  e. 
_V )
9 elpwg 3766 . . . . . . . . . . . . . 14  |-  ( ( X  \  z )  e.  _V  ->  (
( X  \  z
)  e.  ~P ( X  \  S )  <->  ( X  \  z )  C_  ( X  \  S ) ) )
107, 8, 93syl 19 . . . . . . . . . . . . 13  |-  ( J  e.  Top  ->  (
( X  \  z
)  e.  ~P ( X  \  S )  <->  ( X  \  z )  C_  ( X  \  S ) ) )
1110ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  ( ( X  \  z )  e. 
~P ( X  \  S )  <->  ( X  \  z )  C_  ( X  \  S ) ) )
126, 11mpbird 224 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  ( X  \  z )  e.  ~P ( X  \  S ) )
13 elin 3490 . . . . . . . . . . 11  |-  ( ( X  \  z )  e.  ( J  i^i  ~P ( X  \  S
) )  <->  ( ( X  \  z )  e.  J  /\  ( X 
\  z )  e. 
~P ( X  \  S ) ) )
144, 12, 13sylanbrc 646 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  ( X  \  z )  e.  ( J  i^i  ~P ( X  \  S ) ) )
152cldss 17048 . . . . . . . . . . . . 13  |-  ( z  e.  ( Clsd `  J
)  ->  z  C_  X )
1615ad2antrl 709 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  z  C_  X )
17 dfss4 3535 . . . . . . . . . . . 12  |-  ( z 
C_  X  <->  ( X  \  ( X  \  z
) )  =  z )
1816, 17sylib 189 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  ( X  \  ( X  \  z
) )  =  z )
1918eqcomd 2409 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  z  =  ( X  \  ( X  \  z ) ) )
20 difeq2 3419 . . . . . . . . . . . 12  |-  ( x  =  ( X  \ 
z )  ->  ( X  \  x )  =  ( X  \  ( X  \  z ) ) )
2120eqeq2d 2415 . . . . . . . . . . 11  |-  ( x  =  ( X  \ 
z )  ->  (
z  =  ( X 
\  x )  <->  z  =  ( X  \  ( X  \  z ) ) ) )
2221rspcev 3012 . . . . . . . . . 10  |-  ( ( ( X  \  z
)  e.  ( J  i^i  ~P ( X 
\  S ) )  /\  z  =  ( X  \  ( X 
\  z ) ) )  ->  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) )
2314, 19, 22syl2anc 643 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) )
2423ex 424 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( z  e.  ( Clsd `  J
)  /\  S  C_  z
)  ->  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) ) )
25 simpl 444 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  J  e.  Top )
26 elin 3490 . . . . . . . . . . . . 13  |-  ( x  e.  ( J  i^i  ~P ( X  \  S
) )  <->  ( x  e.  J  /\  x  e.  ~P ( X  \  S ) ) )
2726simplbi 447 . . . . . . . . . . . 12  |-  ( x  e.  ( J  i^i  ~P ( X  \  S
) )  ->  x  e.  J )
282opncld 17052 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( X  \  x
)  e.  ( Clsd `  J ) )
2925, 27, 28syl2an 464 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  ( X  \  x )  e.  (
Clsd `  J )
)
3026simprbi 451 . . . . . . . . . . . . . 14  |-  ( x  e.  ( J  i^i  ~P ( X  \  S
) )  ->  x  e.  ~P ( X  \  S ) )
3130adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  x  e.  ~P ( X  \  S
) )
3231elpwid 3768 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  x  C_  ( X  \  S ) )
3332difss2d 3437 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  x  C_  X
)
34 simplr 732 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  S  C_  X
)
35 ssconb 3440 . . . . . . . . . . . . 13  |-  ( ( x  C_  X  /\  S  C_  X )  -> 
( x  C_  ( X  \  S )  <->  S  C_  ( X  \  x ) ) )
3633, 34, 35syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  ( x  C_  ( X  \  S
)  <->  S  C_  ( X 
\  x ) ) )
3732, 36mpbid 202 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  S  C_  ( X  \  x ) )
3829, 37jca 519 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  ( ( X  \  x )  e.  ( Clsd `  J
)  /\  S  C_  ( X  \  x ) ) )
39 eleq1 2464 . . . . . . . . . . 11  |-  ( z  =  ( X  \  x )  ->  (
z  e.  ( Clsd `  J )  <->  ( X  \  x )  e.  (
Clsd `  J )
) )
40 sseq2 3330 . . . . . . . . . . 11  |-  ( z  =  ( X  \  x )  ->  ( S  C_  z  <->  S  C_  ( X  \  x ) ) )
4139, 40anbi12d 692 . . . . . . . . . 10  |-  ( z  =  ( X  \  x )  ->  (
( z  e.  (
Clsd `  J )  /\  S  C_  z )  <-> 
( ( X  \  x )  e.  (
Clsd `  J )  /\  S  C_  ( X 
\  x ) ) ) )
4238, 41syl5ibrcom 214 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  ( z  =  ( X  \  x )  ->  (
z  e.  ( Clsd `  J )  /\  S  C_  z ) ) )
4342rexlimdva 2790 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x )  ->  ( z  e.  ( Clsd `  J
)  /\  S  C_  z
) ) )
4424, 43impbid 184 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( z  e.  ( Clsd `  J
)  /\  S  C_  z
)  <->  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X 
\  x ) ) )
4544abbidv 2518 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  { z  |  ( z  e.  ( Clsd `  J )  /\  S  C_  z ) }  =  { z  |  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) } )
461, 45syl5eq 2448 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  { z  e.  (
Clsd `  J )  |  S  C_  z }  =  { z  |  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X 
\  x ) } )
4746inteqd 4015 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  |^| { z  e.  (
Clsd `  J )  |  S  C_  z }  =  |^| { z  |  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) } )
48 difexg 4311 . . . . . . 7  |-  ( X  e.  J  ->  ( X  \  x )  e. 
_V )
4948ralrimivw 2750 . . . . . 6  |-  ( X  e.  J  ->  A. x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x )  e.  _V )
50 dfiin2g 4084 . . . . . 6  |-  ( A. x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x )  e.  _V  ->  |^|_ x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x )  =  |^| { z  |  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) } )
517, 49, 503syl 19 . . . . 5  |-  ( J  e.  Top  ->  |^|_ x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x )  =  |^| { z  |  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) } )
5251adantr 452 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  |^|_ x  e.  ( J  i^i  ~P ( X 
\  S ) ) ( X  \  x
)  =  |^| { z  |  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) } )
5347, 52eqtr4d 2439 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  |^| { z  e.  (
Clsd `  J )  |  S  C_  z }  =  |^|_ x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x
) )
542clsval 17056 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { z  e.  ( Clsd `  J
)  |  S  C_  z } )
55 uniiun 4104 . . . . . 6  |-  U. ( J  i^i  ~P ( X 
\  S ) )  =  U_ x  e.  ( J  i^i  ~P ( X  \  S ) ) x
5655difeq2i 3422 . . . . 5  |-  ( X 
\  U. ( J  i^i  ~P ( X  \  S
) ) )  =  ( X  \  U_ x  e.  ( J  i^i  ~P ( X  \  S ) ) x )
5756a1i 11 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( X  \  U. ( J  i^i  ~P ( X  \  S ) ) )  =  ( X 
\  U_ x  e.  ( J  i^i  ~P ( X  \  S ) ) x ) )
58 0opn 16932 . . . . . . 7  |-  ( J  e.  Top  ->  (/)  e.  J
)
5958adantr 452 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  (/) 
e.  J )
60 0elpw 4329 . . . . . . 7  |-  (/)  e.  ~P ( X  \  S )
6160a1i 11 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  (/) 
e.  ~P ( X  \  S ) )
62 elin 3490 . . . . . 6  |-  ( (/)  e.  ( J  i^i  ~P ( X  \  S ) )  <->  ( (/)  e.  J  /\  (/)  e.  ~P ( X  \  S ) ) )
6359, 61, 62sylanbrc 646 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  (/) 
e.  ( J  i^i  ~P ( X  \  S
) ) )
64 ne0i 3594 . . . . 5  |-  ( (/)  e.  ( J  i^i  ~P ( X  \  S ) )  ->  ( J  i^i  ~P ( X  \  S ) )  =/=  (/) )
65 iindif2 4120 . . . . 5  |-  ( ( J  i^i  ~P ( X  \  S ) )  =/=  (/)  ->  |^|_ x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x )  =  ( X  \  U_ x  e.  ( J  i^i  ~P ( X  \  S ) ) x ) )
6663, 64, 653syl 19 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  |^|_ x  e.  ( J  i^i  ~P ( X 
\  S ) ) ( X  \  x
)  =  ( X 
\  U_ x  e.  ( J  i^i  ~P ( X  \  S ) ) x ) )
6757, 66eqtr4d 2439 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( X  \  U. ( J  i^i  ~P ( X  \  S ) ) )  =  |^|_ x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x ) )
6853, 54, 673eqtr4d 2446 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( X  \  U. ( J  i^i  ~P ( X  \  S ) ) ) )
69 difssd 3435 . . . 4  |-  ( S 
C_  X  ->  ( X  \  S )  C_  X )
702ntrval 17055 . . . 4  |-  ( ( J  e.  Top  /\  ( X  \  S ) 
C_  X )  -> 
( ( int `  J
) `  ( X  \  S ) )  = 
U. ( J  i^i  ~P ( X  \  S
) ) )
7169, 70sylan2 461 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  ( X  \  S ) )  = 
U. ( J  i^i  ~P ( X  \  S
) ) )
7271difeq2d 3425 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( X  \  (
( int `  J
) `  ( X  \  S ) ) )  =  ( X  \  U. ( J  i^i  ~P ( X  \  S ) ) ) )
7368, 72eqtr4d 2439 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( X  \ 
( ( int `  J
) `  ( X  \  S ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   {cab 2390    =/= wne 2567   A.wral 2666   E.wrex 2667   {crab 2670   _Vcvv 2916    \ cdif 3277    i^i cin 3279    C_ wss 3280   (/)c0 3588   ~Pcpw 3759   U.cuni 3975   |^|cint 4010   U_ciun 4053   |^|_ciin 4054   ` cfv 5413   Topctop 16913   Clsdccld 17035   intcnt 17036   clsccl 17037
This theorem is referenced by:  ntrval2  17070  clsdif  17072  cmclsopn  17081  bcth3  19237
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-top 16918  df-cld 17038  df-ntr 17039  df-cls 17040
  Copyright terms: Public domain W3C validator