HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cmbr Unicode version

Theorem cmbr 22155
Description: Binary relation expressing  A commutes with  B. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cmbr  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  C_H  B  <->  A  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B ) ) ) ) )
Dummy variables  x  y are mutually distinct and distinct from all other variables.

Proof of Theorem cmbr
StepHypRef Expression
1 eleq1 2344 . . . . 5  |-  ( x  =  A  ->  (
x  e.  CH  <->  A  e.  CH ) )
21anbi1d 687 . . . 4  |-  ( x  =  A  ->  (
( x  e.  CH  /\  y  e.  CH )  <->  ( A  e.  CH  /\  y  e.  CH )
) )
3 id 21 . . . . 5  |-  ( x  =  A  ->  x  =  A )
4 ineq1 3364 . . . . . 6  |-  ( x  =  A  ->  (
x  i^i  y )  =  ( A  i^i  y ) )
5 ineq1 3364 . . . . . 6  |-  ( x  =  A  ->  (
x  i^i  ( _|_ `  y ) )  =  ( A  i^i  ( _|_ `  y ) ) )
64, 5oveq12d 5837 . . . . 5  |-  ( x  =  A  ->  (
( x  i^i  y
)  vH  ( x  i^i  ( _|_ `  y
) ) )  =  ( ( A  i^i  y )  vH  ( A  i^i  ( _|_ `  y
) ) ) )
73, 6eqeq12d 2298 . . . 4  |-  ( x  =  A  ->  (
x  =  ( ( x  i^i  y )  vH  ( x  i^i  ( _|_ `  y
) ) )  <->  A  =  ( ( A  i^i  y )  vH  ( A  i^i  ( _|_ `  y
) ) ) ) )
82, 7anbi12d 693 . . 3  |-  ( x  =  A  ->  (
( ( x  e. 
CH  /\  y  e.  CH )  /\  x  =  ( ( x  i^i  y )  vH  (
x  i^i  ( _|_ `  y ) ) ) )  <->  ( ( A  e.  CH  /\  y  e.  CH )  /\  A  =  ( ( A  i^i  y )  vH  ( A  i^i  ( _|_ `  y ) ) ) ) ) )
9 eleq1 2344 . . . . 5  |-  ( y  =  B  ->  (
y  e.  CH  <->  B  e.  CH ) )
109anbi2d 686 . . . 4  |-  ( y  =  B  ->  (
( A  e.  CH  /\  y  e.  CH )  <->  ( A  e.  CH  /\  B  e.  CH )
) )
11 ineq2 3365 . . . . . 6  |-  ( y  =  B  ->  ( A  i^i  y )  =  ( A  i^i  B
) )
12 fveq2 5485 . . . . . . 7  |-  ( y  =  B  ->  ( _|_ `  y )  =  ( _|_ `  B
) )
1312ineq2d 3371 . . . . . 6  |-  ( y  =  B  ->  ( A  i^i  ( _|_ `  y
) )  =  ( A  i^i  ( _|_ `  B ) ) )
1411, 13oveq12d 5837 . . . . 5  |-  ( y  =  B  ->  (
( A  i^i  y
)  vH  ( A  i^i  ( _|_ `  y
) ) )  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B
) ) ) )
1514eqeq2d 2295 . . . 4  |-  ( y  =  B  ->  ( A  =  ( ( A  i^i  y )  vH  ( A  i^i  ( _|_ `  y ) ) )  <->  A  =  (
( A  i^i  B
)  vH  ( A  i^i  ( _|_ `  B
) ) ) ) )
1610, 15anbi12d 693 . . 3  |-  ( y  =  B  ->  (
( ( A  e. 
CH  /\  y  e.  CH )  /\  A  =  ( ( A  i^i  y )  vH  ( A  i^i  ( _|_ `  y
) ) ) )  <-> 
( ( A  e. 
CH  /\  B  e.  CH )  /\  A  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B
) ) ) ) ) )
17 df-cm 22154 . . 3  |-  C_H  =  { <. x ,  y
>.  |  ( (
x  e.  CH  /\  y  e.  CH )  /\  x  =  (
( x  i^i  y
)  vH  ( x  i^i  ( _|_ `  y
) ) ) ) }
188, 16, 17brabg 4283 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  C_H  B  <->  ( ( A  e.  CH  /\  B  e.  CH )  /\  A  =  (
( A  i^i  B
)  vH  ( A  i^i  ( _|_ `  B
) ) ) ) ) )
1918bianabs 852 1  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  C_H  B  <->  A  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1624    e. wcel 1685    i^i cin 3152   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   CHcch 21501   _|_cort 21502    vH chj 21505    C_H ccm 21508
This theorem is referenced by:  cmbri  22161  cm2j  22191
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-rex 2550  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-xp 4694  df-cnv 4696  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fv 5229  df-ov 5822  df-cm 22154
  Copyright terms: Public domain W3C validator