HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cmbr Unicode version

Theorem cmbr 22179
Description: Binary relation expressing  A commutes with  B. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cmbr  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  C_H  B  <->  A  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B ) ) ) ) )

Proof of Theorem cmbr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2356 . . . . 5  |-  ( x  =  A  ->  (
x  e.  CH  <->  A  e.  CH ) )
21anbi1d 685 . . . 4  |-  ( x  =  A  ->  (
( x  e.  CH  /\  y  e.  CH )  <->  ( A  e.  CH  /\  y  e.  CH )
) )
3 id 19 . . . . 5  |-  ( x  =  A  ->  x  =  A )
4 ineq1 3376 . . . . . 6  |-  ( x  =  A  ->  (
x  i^i  y )  =  ( A  i^i  y ) )
5 ineq1 3376 . . . . . 6  |-  ( x  =  A  ->  (
x  i^i  ( _|_ `  y ) )  =  ( A  i^i  ( _|_ `  y ) ) )
64, 5oveq12d 5892 . . . . 5  |-  ( x  =  A  ->  (
( x  i^i  y
)  vH  ( x  i^i  ( _|_ `  y
) ) )  =  ( ( A  i^i  y )  vH  ( A  i^i  ( _|_ `  y
) ) ) )
73, 6eqeq12d 2310 . . . 4  |-  ( x  =  A  ->  (
x  =  ( ( x  i^i  y )  vH  ( x  i^i  ( _|_ `  y
) ) )  <->  A  =  ( ( A  i^i  y )  vH  ( A  i^i  ( _|_ `  y
) ) ) ) )
82, 7anbi12d 691 . . 3  |-  ( x  =  A  ->  (
( ( x  e. 
CH  /\  y  e.  CH )  /\  x  =  ( ( x  i^i  y )  vH  (
x  i^i  ( _|_ `  y ) ) ) )  <->  ( ( A  e.  CH  /\  y  e.  CH )  /\  A  =  ( ( A  i^i  y )  vH  ( A  i^i  ( _|_ `  y ) ) ) ) ) )
9 eleq1 2356 . . . . 5  |-  ( y  =  B  ->  (
y  e.  CH  <->  B  e.  CH ) )
109anbi2d 684 . . . 4  |-  ( y  =  B  ->  (
( A  e.  CH  /\  y  e.  CH )  <->  ( A  e.  CH  /\  B  e.  CH )
) )
11 ineq2 3377 . . . . . 6  |-  ( y  =  B  ->  ( A  i^i  y )  =  ( A  i^i  B
) )
12 fveq2 5541 . . . . . . 7  |-  ( y  =  B  ->  ( _|_ `  y )  =  ( _|_ `  B
) )
1312ineq2d 3383 . . . . . 6  |-  ( y  =  B  ->  ( A  i^i  ( _|_ `  y
) )  =  ( A  i^i  ( _|_ `  B ) ) )
1411, 13oveq12d 5892 . . . . 5  |-  ( y  =  B  ->  (
( A  i^i  y
)  vH  ( A  i^i  ( _|_ `  y
) ) )  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B
) ) ) )
1514eqeq2d 2307 . . . 4  |-  ( y  =  B  ->  ( A  =  ( ( A  i^i  y )  vH  ( A  i^i  ( _|_ `  y ) ) )  <->  A  =  (
( A  i^i  B
)  vH  ( A  i^i  ( _|_ `  B
) ) ) ) )
1610, 15anbi12d 691 . . 3  |-  ( y  =  B  ->  (
( ( A  e. 
CH  /\  y  e.  CH )  /\  A  =  ( ( A  i^i  y )  vH  ( A  i^i  ( _|_ `  y
) ) ) )  <-> 
( ( A  e. 
CH  /\  B  e.  CH )  /\  A  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B
) ) ) ) ) )
17 df-cm 22178 . . 3  |-  C_H  =  { <. x ,  y
>.  |  ( (
x  e.  CH  /\  y  e.  CH )  /\  x  =  (
( x  i^i  y
)  vH  ( x  i^i  ( _|_ `  y
) ) ) ) }
188, 16, 17brabg 4300 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  C_H  B  <->  ( ( A  e.  CH  /\  B  e.  CH )  /\  A  =  (
( A  i^i  B
)  vH  ( A  i^i  ( _|_ `  B
) ) ) ) ) )
1918bianabs 850 1  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  C_H  B  <->  A  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    i^i cin 3164   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   CHcch 21525   _|_cort 21526    vH chj 21529    C_H ccm 21532
This theorem is referenced by:  cmbri  22185  cm2j  22215
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-iota 5235  df-fv 5279  df-ov 5877  df-cm 22178
  Copyright terms: Public domain W3C validator