HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cmbri Unicode version

Theorem cmbri 22165
Description: Binary relation expressing the commutes relation. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjoml2.1  |-  A  e. 
CH
pjoml2.2  |-  B  e. 
CH
Assertion
Ref Expression
cmbri  |-  ( A  C_H  B  <->  A  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B
) ) ) )

Proof of Theorem cmbri
StepHypRef Expression
1 pjoml2.1 . 2  |-  A  e. 
CH
2 pjoml2.2 . 2  |-  B  e. 
CH
3 cmbr 22159 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  C_H  B  <->  A  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B ) ) ) ) )
41, 2, 3mp2an 653 1  |-  ( A  C_H  B  <->  A  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1623    e. wcel 1685    i^i cin 3152   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   CHcch 21505   _|_cort 21506    vH chj 21509    C_H ccm 21512
This theorem is referenced by:  cmcmlem  22166  cmcm2i  22168  cmbr2i  22171  cmbr3i  22175  pjclem1  22771  pjci  22776
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-rex 2550  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-xp 4694  df-cnv 4696  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fv 5229  df-ov 5823  df-cm 22158
  Copyright terms: Public domain W3C validator