HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cmbri Unicode version

Theorem cmbri 22283
Description: Binary relation expressing the commutes relation. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjoml2.1  |-  A  e. 
CH
pjoml2.2  |-  B  e. 
CH
Assertion
Ref Expression
cmbri  |-  ( A  C_H  B  <->  A  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B
) ) ) )

Proof of Theorem cmbri
StepHypRef Expression
1 pjoml2.1 . 2  |-  A  e. 
CH
2 pjoml2.2 . 2  |-  B  e. 
CH
3 cmbr 22277 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  C_H  B  <->  A  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B ) ) ) ) )
41, 2, 3mp2an 653 1  |-  ( A  C_H  B  <->  A  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1642    e. wcel 1710    i^i cin 3227   class class class wbr 4104   ` cfv 5337  (class class class)co 5945   CHcch 21623   _|_cort 21624    vH chj 21627    C_H ccm 21630
This theorem is referenced by:  cmcmlem  22284  cmcm2i  22286  cmbr2i  22289  cmbr3i  22293  pjclem1  22889  pjci  22894
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pr 4295
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-rex 2625  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-iota 5301  df-fv 5345  df-ov 5948  df-cm 22276
  Copyright terms: Public domain W3C validator